Чтение онлайн

на главную - закладки

Жанры

Психология: учебник для гуманитарных вузов

коллектив авторов 1

Шрифт:

Электроэнцефалография – метод регистрации и анализа электрической активности мозга.

Мозг человека состоит из 1012 нервных клеток. Обычная нервная клетка получает информацию от сотен и тысяч других клеток и передает ее сотням и тысячам. Размер их колеблется от 1-2 микрон (фотоэлементы сетчатки) до 1000 микрон (гигантские нейроны моллюсков), цвет – от белого до желто-оранжевого и голубоватого. Форма нейронов обычно неправильная, например бывают клетки, похожие на грецкий орех, что получается из-за складчатости мембраны. Чаще всего нейрон похож на каплю (рис. 3-5, а). Нервные клетки могут иметь много отростков – аксонов и дендритов. По функциональным характеристикам эти отростки различны. Аксоны проводят электрические разряды быстрее (со скоростью до 1,5 м/с) и дальше (до 1,5 м), чем дендриты. Нервная клетка имеет исключительно сложное строение, она является субстратом самых высокоорганизованных физиологических

реакций. Нейроны имеют электрический заряд, равный в состоянии покоя примерно – 50 милливольт (мВ). Это называется мембранным потенциалом. Нервные клетки могут очень быстро изменять разность потенциалов, измеряемую между внутренним содержимым и внешней поверхностью мембраны, в этом их главное отличие от любой другой клетки тела. При этом возникает электрический разряд – потенциал действия, амплитуда которого достигает 110 мВ в абсолютных единицах, а длительность – одной миллисекунды. Целая серия таких разрядов, разделенных различными временными интервалами, составляет паттерн нейронного разряда (рис. 3-5, б). Генерирование нейроном определенных паттернов и составляет основу кодирования и передачи информации в нервной системе.

Рис. 3-5. Нейрон и генерируемый им паттерн

Контакт нейронов друг с другом происходит в синапсах – специализированных структурах. Синапсы могут быть электрическими и химическими. В электрическом синапсе мембраны нервных клеток соприкасаются через специализированный субстрат, улучшающий проведение импульса. В химических синапсах передача сигналов происходит при помощи химического посредника – нейромедиатора. Нейромедиатор выделяется из пресинаптического окончания под влиянием импульсов, пришедших от пресинаптического нейрона. Он «капает» на специальные белковые молекулы – рецепторы, которые дают команду внутриклеточным реакциям, и в результате возникает ответ постсинаптического нейрона.

Для регистрации и анализа электрической активности мозга используется техника электроэнцефалографии (ЭЭГ). Чтобы зарегистрировать электроэнцефалограмму, необходимо на коже головы расположить два электрода. Каждая пара электродов отводит сигнал по одному из нескольких регистрируемых каналов ЭЭГ. Этот сигнал отражает разность потенциалов между процессами, отводимыми двумя электродами. Колебания потенциалов – это проявления спонтанной, или фоновой, активности мозга (рис. 3-6). Исследования, выполненные с использованием регистрации электроэнцефалограммы, показывают, что для бодрствования, сна и промежуточных состояний типичны определенные ритмы мозга (Данилова Н. Н., 1992). ЭЭГ-ритмы также изменяются под влиянием каких-либо внутренних или внешних событий. Альфа-ритм – это более или менее регулярная электрическая активность мозга, частота которой около 10 Гц, особенно ясно выраженная в зрительных отделах мозга. У большинства людей альфа-ритм появляется, когда человек расслабляется и закрывает глаза. Когда человек возбужден или насторожен, альфа-волны замещаются низковольтными нерегулярными быстрыми колебаниями. Это реакции активации – десинхронизации альфа-ритма. Во время сна электрическая активность мозга представлена медленными колебаниями. Нерегулярные медленные волны известны под названием дельта-волн. Например, они могут исходить из области, расположенной поблизости от зоны с каким-либо повреждением. Патологические состояния мозга также отражаются в изменении электроэнцефалограммы. Отсутствие электрических разрядов или развитие патологической активности является серьезным основанием для того, чтобы подозревать болезнь мозга.

Рис. 3-6. Энцефалограмма человека во время сна

Электроэнцефалография используется при исследовании механизмов ритмической активности мозга, поиске структур и элементов, задающих определенный ритм, а также способов синхронизации активности нервных клеток. Другое направление использования ЭЭГ связано с диагностикой функциональных состояний (Данилова Н. Н., 1992).

Применение ЭЭГ в изучении сна позволило показать неоднородность этого исключительно важного состояния для живых существ. Человек спит около трети своей жизни. Зачем организму нужен сон? Самый простой ответ – для отдыха мозга. Но оказывается, во время сна мозг работает порой активнее, чем при бодрствовании. Сон – это особая форма работы мозга.

Опыты с использованием ЭЭГ показали, что сначала регистрируются альфа-волны – и это состояние спокойного бодрствования. Затем начинается стадия сонных «веретен». Мускулы спящего человека расслабляются, пульс замедляется, дыхание становится ровным, в ЭЭГ регистрируются дельта-волны. Такой сон ученые называют медленным. Но вот спящий, не просыпаясь, начинает ворочаться, учащается дыхание, под закрытыми веками заметно быстрое движение глазных яблок. Иногда человек что-то говорит во сне. Это стадия сновидений – быстрый, или парадоксальный, сон.

На этой стадии регистрируются быстрые движения глаз, а в ЭЭГ – ритмы, которые характерны для состояния бодрствования. Все стадии сна в ЭЭГ проходят за 60-90 минут, а затем цикл повторяется. За ночь весь блок повторяется 4-6 раз (Шевченко Д. Г., 1997).

У животных при быстром сне, не открываясь, двигаются глаза, а также уши, хвост, подергиваются лапы. У амфибий и рептилий сон еще не разделен на быструю и медленную фазы. У птиц фаза быстрого сна длится всего 5-15 секунд. А у человека, по данным опытов, самое длинное сновидение длилось 2 часа 23 минуты. Когда подопытным кошкам не давали видеть сны, не мешая в то же время спать, в состоянии бодрствования у них возникали галлюцинации, – они могли погнаться за несуществующим предметом. Галлюцинации возникали и у людей. А новорожденные спят исключительно «быстрым» сном. Интересно протекает сон у дельфинов. Оказывается, у них поочередно спит то правое, то левое полушарие мозга. Благодаря этому дельфины не перестают двигаться круглые сутки и могут время от времени всплывать для дыхания.

3.3. Центральная нервная система

Нервная система подразделяется на центральные и периферические отделы (Моренков Э. Д., 1998). Центральная нервная система (ЦНС) представлена головным и спинным мозгом. Она защищена костной тканью черепа и позвоночника и окружена оболочками. Внутри нее находится система полостей и щелей, получивших название желудочков мозга и заполненных спинномозговой жидкостью. Головной мозг включает стволовые отделы, мозжечок, или малый мозг, а также большой, или конечный, мозг, который присоединяется к стволу посредством переходного отдела – промежуточного мозга. Ствол мозга, в свою очередь, состоит из продолговатого мозга, прилегающего к нему моста и следующего затем среднего мозга. Мозжечок может рассматриваться как дорсальный придаток ствола на уровне моста, вместе с которым он составляет нижний мозг. Промежуточный и конечный мозг являются образованиями переднего мозга. Спинной мозг составляет около 2 % от общего веса мозга, мозжечок – около 10 %, стволовые структуры – немногим менее 6 %. Остальное, т. е. почти 5/6 веса мозга, приходится на конечный мозг. Если рассматривать его сверху, то видны разделенные продольной щелью большие полушария, которые прикрывают другие отделы мозга. Наружная зона полушарий представлена серым веществом – корой, организованной в слоистую структуру. Площадь поверхности коры конечного мозга находится чаще всего в пределах 1000-1200 см 2. Из них лишь около 1/3 находится действительно на поверхности полушарий, а остальное скрыто в глубине многочисленных борозд.

Периферическая нервная система образована черепномозговыми и спинномозговыми нервами, а также сенсорными и вегетативными узлами – ганглиями, представляющими собой скопления нервных клеток, волокон и сопровождающей их ткани.

 

С функциональной точки зрения выделяют соматическую и вегетативную нервные системы. Последняя состоит из симпатического и парасимпатического отделов, центральные части которых расположены, соответственно, в грудопоясничной области спинного мозга и в стволе (в продолговатом и среднем мозге), а также в крестцовой части спинного мозга.

Строение мозга у животных разных видов неодинаково. У предков млекопитающих, как и у современных рептилий, кора больших полушарий была очень слабо дифференцирована (рис. 3-7). Но на пути от рептилиеподобных предков до современных млекопитающих произошло значительное увеличение коры мозга по сравнению с другими структурами, которые, конечно, тоже подверглись изменениям по размерам, форме, объему (Гаврилов В., 1997). При этом степень увеличения коры мозга отличает приматов от других млекопитающих, а человека – от остальных приматов. Соотношение площади коры мозга у мыши, макаки и человека 1 :100 :1000, а соотношение объемов коры головного и спинного мозга у крыс и человека – 31 :35 и 77 :2 соответственно.

Рис. 3/7. Строение мозга у животных и человека

Сравнивая строение и функции мозга животных и человека, мы можем задать вопрос: в чем же особенность мозга человека? Мы не имеем такого острого зрения, как у орла, не умеем бегать так быстро, как гепард, не умеем летать, как птицы. Но крылья, зоркие глаза, быстрые ноги – это дар природы. Человеку же дано другое, гораздо большее – разум, который восполняет все, недоданное природой. Нет особой зоркости, но есть бинокль, телескоп и микроскоп, нет особой резвости – есть машины и велосипеды, нет крыльев – есть дельтапланы и космические корабли. Разум не только компенсирут отсутствие любых природных приспособлений, но и ускоряет продвижение вперед – от возникновения жизни на Земле до появления крылатых существ прошли сотни миллионов лет, а от возникновения разумного человека до космических полетов значительно меньше (по современным данным, возраст Homo sapiens – около 20 000 лет).

Поделиться:
Популярные книги

Землянка для двух нагов

Софи Ирен
Фантастика:
космическая фантастика
5.00
рейтинг книги
Землянка для двух нагов

Затерянные земли или Великий Поход

Михайлов Дем Алексеевич
8. Господство клана Неспящих
Фантастика:
фэнтези
рпг
7.89
рейтинг книги
Затерянные земли или Великий Поход

Случайная жена для лорда Дракона

Волконская Оксана
Фантастика:
юмористическая фантастика
попаданцы
5.00
рейтинг книги
Случайная жена для лорда Дракона

Неудержимый. Книга XIX

Боярский Андрей
19. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIX

Академия проклятий. Книги 1 - 7

Звездная Елена
Академия Проклятий
Фантастика:
фэнтези
8.98
рейтинг книги
Академия проклятий. Книги 1 - 7

Бастард Императора. Том 2

Орлов Андрей Юрьевич
2. Бастард Императора
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Бастард Императора. Том 2

Интернет-журнал "Домашняя лаборатория", 2007 №6

Журнал «Домашняя лаборатория»
Дом и Семья:
хобби и ремесла
сделай сам
5.00
рейтинг книги
Интернет-журнал Домашняя лаборатория, 2007 №6

Часовая башня

Щерба Наталья Васильевна
3. Часодеи
Фантастика:
фэнтези
9.43
рейтинг книги
Часовая башня

Гримуар темного лорда IX

Грехов Тимофей
9. Гримуар темного лорда
Фантастика:
попаданцы
альтернативная история
аниме
фэнтези
5.00
рейтинг книги
Гримуар темного лорда IX

Сумеречный Стрелок 4

Карелин Сергей Витальевич
4. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 4

Контрактер Душ

Шмаков Алексей Семенович
1. Контрактер Душ
Фантастика:
фэнтези
попаданцы
аниме
5.20
рейтинг книги
Контрактер Душ

Архил...? Книга 2

Кожевников Павел
2. Архил...?
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Архил...? Книга 2

Неудержимый. Книга XX

Боярский Андрей
20. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XX

Часограмма

Щерба Наталья Васильевна
5. Часодеи
Детские:
детская фантастика
9.43
рейтинг книги
Часограмма