Пятьсот двадцать головоломок
Шрифт:
Я составил таблицы для разного числа игроков вплоть до 26. Однако такая задача слишком трудна для данной книги, за исключением простого случая с шестью игроками.
Может ли читатель, обозначив игроков А, В, С, D, Еи Fи объединив их всевозможными способами в пары ( АВ, CD, EF, AF, BD, СЕи
440. Футбольные результаты.В конце футбольного сезона один читатель сообщил мне, что, возвращаясь из Глазго после матча между Шотландией и Англией, он обратил внимание на следующую таблицу, помещенную в газете:
Поскольку он уже знал, что Шотландия выиграла у Англии со счетом 3 : 0, ему пришла в голову идея найти счет в остальных пяти матчах из этой таблицы. Он успешно справился со своей задачей.
Не могли бы и вы определить, сколько голов забила и пропустила в свои ворота каждая из команд в каждом матче?
441. Сломанная линейка.Вот интересная головоломка, которая напоминает (хотя в действительности существенно отличается) одну из классических задач Баше о гире, разрезанной на куски, с помощью которых удается определить вес любого груза величиной от 1 фунта до полного веса всех кусков. В нашем случае у одного человека есть линейка, у которой обломился конец, так что ее длина стала равной 33 см. Большинство делений на линейке стерлось, так что разобрать можно только 8 из них. Тем не менее с помощью линейки можно измерить любое целое число сантиметров от 1 до 33.
Где расположены сохранившиеся деления?
Для примера я привел на рисунке линейку длиной 13 см с четырьмя делениями. Если мне нужно отмерить 4 см, то я отмеряю 1 и 3 см; если 8 см, то 6 и 2 см; если 10 см, то 3, 1 и 6 см и т. д. Разумеется, нужное измерение следует сделать, приложив линейку один раз; в противном случае мы могли бы получить любое число сантиметров, последовательно отмеряя до 1 см, что лишило бы головоломку всякого смысла.
442. Шесть коттеджей.Дорога длиной 27 км окружает заброшенный и безлюдный участок. Вдоль нее расположены 6 коттеджей (см. рисунок) таким образом, что одни из них находятся от других на расстоянии 1, 2, 3 и т. д. до 26 км включительно. Например, Браун может быть в 1 км от Стиггинса, Джонс — в 2 км от Роджерса, Вильсон — в 3 км от Джонса и т. д. Разумеется, ходить друг к другу обитатели домов могут как по часовой стрелке, так и против нее.
Не могли бы вы расположить коттеджи на таких расстояниях один от другого, чтобы удовлетворить условиям задачи? Рисунок умышленно сделан так, чтобы он не мог служить «подсказкой».
443. Четыре фишки вдоль прямой.Перед вами доска из 36 квадратов, на которой 4 фишки расположены вдоль одной прямой таким образом, что любой квадрат доски оказался на одной горизонтали, вертикали или диагонали по крайней мере с одной из фишек. Иначе говоря, если рассматривать наши фишки как шахматных ферзей, то каждый квадрат доски находится под ударом по крайней мере одного ферзя. Головоломка состоит в том, чтобы выяснить, сколькими способами можно расставить 4 фишки вдоль прямой так, чтобы каждый
Две позиции считаются различными, если наборы из 4 квадратов, занятых фишками, по крайней мере частично не совпадают. Так, в приведенном примере все фишки можно передвинуть вправо на соседний столбец или же расположить их на любой из двух центральных строк. Мы нашли, таким образом, 4 различных решения, о которых можно сказать, что они получаются друг из друга при поворотах и отражениях. Помните, что фишки все время должны располагаться вдоль некоторой прямой. Эта головоломка не слишком трудна и в то же время достаточно занимательна.
444. Мухи на оконном стекле.Перед вами окно, застекленное с помощью 81 стеклянного квадратика. На нем сидят 9 мух, причем ни одна муха не находится с другой на одной и той же прямой по вертикали, горизонтали или диагонали. Шесть из них совсем сонные и сидят не двигаясь, зато каждая из 3 остальных переползает на соседний квадрат. И все же после такого перемещения ни одна муха по-прежнему не находится на одной прямой с какой-либо из остальных.
Какие 3 мухи переползли и на какие квадраты (свободные в настоящий момент)?
445. За ленчем.Клерки фирмы «Пилкинс энд Попинджей» решили, что они каждый день будут садиться по трое за один и тот же стол до тех пор, пока какие-либо 3 человека не будут вынуждены сесть за этот стол вторично. Такое же число клерков фирмы «Рэдсон, Робсон энд Росс» решили проделать то же самое, но только не по 3, а по 4 человека. Когда они начали осуществлять свой план, то обнаружилось, что клерки второй фирмы могут продолжать пересаживаться ровно втрое дольше, чем их соседи.
Какое наименьшее число клерков могло служить в каждой из двух фирм?
446. «Кипучая» головоломка.Сколькими способами буквы слова EFFERVESCES [25] можно разместить вдоль прямой так, чтобы два Е не оказались рядом? Разумеется, мы не различаем между собой одинаковые буквы вроде FF, так как, переставляя их между собой, мы не получим нового размещения.
Когда читатель это выяснит, он может попытаться найти ответ при тех же самых условиях в случае, когда буквы расположены по кругу (см. рисунок). Разумеется, нас интересует порядок букв, а не их место на окружности; кроме того, читать всегда следует по часовой стрелке, как показано на рисунке.
25
Пузырьки воздуха, образующиеся при кипении ( англ.). — Прим. перев.
447. Квадрат из плиток.Имеется 20 плиток, окрашенных в одни и те же 4 цвета (взаимное расположение цветов показано на рисунке разной штриховкой).
Головоломка состоит в том, чтобы, выбрав 16 плиток, составить из них квадрат. Четвертушки одного цвета должны примыкать друг к другу: белые к белым, черные к черным и т. д. Нетрудно вырезать квадраты из бумаги или картона и покрасить их в любые цвета, точно соблюдая при этом их взаимное расположение, указанное на рисунке.