Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Чтобы создать реактивную силу, необходимо обеспечить упорядоченное, организованное истечение молекул газа из двигателя в одном направлении; тогда реактивный эффект всех вытекающих молекул суммируется, давая в результате нужную нам реактивную силу. Поэтому всякий ракетный двигатель по идее представляет собой машину для извержения молекул газа с максимально возможной скоростью в одном, общем для всех молекул, направлении, следовательно, машину для преобразования химической энергии топлива сначала в тепловую энергию беспорядочного движения молекул, а затем в скоростную (кинетическую) энергию их упорядоченного истечения из двигателя.

Таким образом первая часть рабочего процесса ракетного двигателя заключается в преобразовании химической энергии топлива в тепловую. Это преобразование осуществляется

в ходе химической реакции внутри двигателя, в той его части, которую называют камерой сгорания, и происходит обычно при постоянном давлении.

Вторая часть рабочего процесса двигателя заключается в преобразовании тепловой энергии хаотического движения молекул в скоростную энергию их организованного истечения, т. е. в скоростную энергию реактивной струи газов, вытекающих из двигателя. Это преобразование осуществляется в процессе расширения газов от давления, имеющего место в камере сгорания двигателя, до атмосферного давления, т. е. до давления на выходе из двигателя, и обычно происходит в той его части, которая носит название сопла.

В современных ракетных двигателях указанный выше рабочий процесс происходит непрерывно, хотя возможны двигатели прерывного действия, в которых подача топлива в камеру сгорания и все последующие процессы происходят периодически.

Таким образом общим результатом рабочего процесса ракетного двигателя является преобразование химической энергии топлива в скоростную энергию струи газов, вытекающих из сопла в атмосферу. Однако при этом далеко не вся химическая энергия топлива (теплотворная способность) переходит в скоростную энергию струи, а только определенная часть ее. Чем совершеннее рабочий процесс, тем больше эта полезно используемая часть теплотворной способности топлива. В современных; ракетных двигателях в скоростную энергию струи газов переходит меньше половины тепла, заключенного в топливе [2] . Большая часть (до 2/3) этого тепла представляет собой потери рабочего процесса. Часть тепла теряется из-за неполного сгорания топлива, а другая, большая, теряется вместе с газами, выходящими из двигателя, так как их температура очень высока (1000–1500 °C). Уменьшение этих потерь рабочего процесса приводит к увеличению скорости истечения и, следовательно, увеличению тяги. Однако, как учит термодинамика — наука о преобразовании тепла в работу, — все тепло не может перейти в скоростную энергию газов. Некоторая часть этого тепла представляет собой неизбежные потери.

2

Для оценки совершенства рабочего процесса обычно вводят так называемый внутренний коэффициент полезного действия двигателя. Его величина равна 0,3–0,6.

Теперь ясно, как теплотворная способность топлива влияет на скорость истечения. Чем больше теплотворная способность, тем больше тепловой энергии, при данной степени совершенства рабочего процесса двигателя, переходит в скоростную энергию газов, т. е. тем больше скорость истечения. И физически очевидно, что чем больше скорость теплового движения молекул после сгорания, тем больше и скорость истечения газов из двигателя.

С другой стороны, чем совершеннее рабочий процесс двигателя, тем также больше скорость истечения. Поэтому, например, более удачная конструкция двигателя, в частности, сопла, позволяющая лучше организовать истечение, т. е. добиться, чтобы скорости молекул газа на выходе из двигателя имели одинаковое направление и были большими по величине, также приводит к увеличению тяги.

Такое же влияние оказывает давление газов в камере сгорания двигателя. Чем больше это давление по сравнению с атмосферным, т. е. с давлением газов на выходе из двигателя, тем большая доля тепла переходит в скоростную энергию газов и поэтому больше скорость истечения и тяга двигателя, рассчитанного на это увеличенное давление.

Из всех внешних условий (скорость полета, состояние атмосферы и др.) только атмосферное давление оказывает некоторое, да и то небольшое, влияние на рабочий процесс ракетного двигателя. Эта независимость рабочего процесса от внешних

условий является важным свойством ракетного двигателя. Благодаря этому свойству скорость истечения и секундный расход газов, а следовательно, и тяга ракетного двигателя, также остаются постоянными при изменении внешних условий.

Только при изменении атмосферного давления, например с изменением высоты полета, тяга несколько изменяется — с увеличением высоты тяга растет.

Особенно важным является то, что тяга остается постоянной при изменении скорости полета.

Мощность ракетного двигателя

Мощность, развиваемая двигателем, т. е. механическая работа, совершаемая им в единицу времени (секунду), является важнейшей характеристикой любого двигателя. Это и естественно, если иметь в виду, что именно совершение этой механической работы за счет израсходования определенного количества энергии другого вида — тепловой, электрической или еще какой-либо — и является назначением всякого двигателя. В соответствии с этим двигатели подразделяются на электрические, тепловые и т. д.

Обычно мощность, развиваемая каким-либо двигателем, может быть использована самыми разнообразными способами. Для этого вал двигателя связывают с тем или иным потребителем механической работы. Так, например, поршневой двигатель внутреннего сгорания может быть установлен на электростанции и вращать ротор динамомашины, тогда мощность двигателя будет преобразовываться в электрическую энергию; он может вращать трансмиссию в цехе и приводить таким образом в движение станки; может быть установлен на автомобиле для привода его ведущих колес; наконец, может вращать пропеллер самолета и т. д. Во всех этих случаях мощность двигателя будет неизменной, она будет только по-разному расходоваться. В частности, для нас очень важно, что мощность такого двигателя, установленного, допустим, на самолете, будет также одинаковой, вне зависимости от того, неподвижен ли самолет, стоящий на аэродроме, или летит со скоростью в сотни километров в час.

Именно этим свойством обычного поршневого авиационного двигателя объясняется то, что он перестал удовлетворять требованию непрерывного роста скорости полета, характерному для современной авиации.

Действительно, мощность, потребная для полета данного самолета, очень быстро растет при увеличении скорости полета, пропорционально кубу этой скорости. Значит, при увеличении скорости полета в два раза потребная мощность вырастет соответственно в восемь раз. Еще значительнее становится рост потребной мощности при приближении скорости полета к скорости звука, т. е. скорости, с которой звук распространяется в воздухе (немногим более 1200 км/часвблизи земли), что объясняется дополнительным сопротивлением, связанным с явлением сжимаемости воздуха при этих скоростях.

Установка на самолетах все более мощных двигателей приводит лишь к незначительному увеличению скорости полета. Более мощные двигатели оказываются и более тяжелыми (вес двигателя увеличивается почти пропорционально его мощности), а также большими по размерам, вследствие чего для их установки требуются и большие по размерам самолеты. Но это в свою очередь увеличивает мощность, потребную для полета с данной скоростью.

Выход из этого заколдованного круга был найден применением двигателей принципиально иного типа — двигателей прямой реакции в частности, ракетных. Поэтому не без основания говорят что применение реактивных двигателей в авиации представляет собой настоящую техническую революцию.

Ракетный двигатель в смысле развиваемой им мощности ведет себя совсем иначе, чем, например, поршневые двигатели внутреннего сгорания.

B этом легко убедиться.

Как известно, мощность — это работа, произведенная за секунду, работа же есть действие силы на некотором пути. Поэтому величина работы определяется произведением силы на пройденный в направлении ее действия путь, а мощность соответственно равна произведению силы на скорость. Если мощность измерять в лошадиных силах, то, как известно, величину секундной работы в килограммометрах нужно еще разделить на 75, так как 1 л. с. = 75 кгм/сек; таким образом:

Поделиться:
Популярные книги

Мастер Разума V

Кронос Александр
5. Мастер Разума
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Мастер Разума V

Темный Лекарь 9

Токсик Саша
9. Темный Лекарь
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Темный Лекарь 9

Попаданка в деле, или Ваш любимый доктор

Марей Соня
1. Попаданка в деле, или Ваш любимый доктор
Фантастика:
фэнтези
5.50
рейтинг книги
Попаданка в деле, или Ваш любимый доктор

Идеальный мир для Лекаря 23

Сапфир Олег
23. Лекарь
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 23

Ермак. Телохранитель

Валериев Игорь
2. Ермак
Фантастика:
альтернативная история
7.00
рейтинг книги
Ермак. Телохранитель

Часограмма

Щерба Наталья Васильевна
5. Часодеи
Детские:
детская фантастика
9.43
рейтинг книги
Часограмма

Прометей: Неандерталец

Рави Ивар
4. Прометей
Фантастика:
героическая фантастика
альтернативная история
7.88
рейтинг книги
Прометей: Неандерталец

Хроники странного королевства. Возвращение (Дилогия)

Панкеева Оксана Петровна
Хроники странного королевства
Фантастика:
фэнтези
9.30
рейтинг книги
Хроники странного королевства. Возвращение (Дилогия)

Дурная жена неверного дракона

Ганова Алиса
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Дурная жена неверного дракона

Венецианский купец

Распопов Дмитрий Викторович
1. Венецианский купец
Фантастика:
фэнтези
героическая фантастика
альтернативная история
7.31
рейтинг книги
Венецианский купец

Кодекс Крови. Книга ХVI

Борзых М.
16. РОС: Кодекс Крови
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Кодекс Крови. Книга ХVI

Идеальный мир для Лекаря 5

Сапфир Олег
5. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 5

Бастард Императора. Том 2

Орлов Андрей Юрьевич
2. Бастард Императора
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Бастард Императора. Том 2

Под маской, или Страшилка в академии магии

Цвик Катерина Александровна
Фантастика:
юмористическая фантастика
7.78
рейтинг книги
Под маской, или Страшилка в академии магии