Чтение онлайн

на главную - закладки

Жанры

Сборник задач по математике с решениями для поступающих в вузы

Ваховский Евгений Борисович

Шрифт:

Через точки R и S мы теперь проведем след, который оставит плоскость сечения на плоскости нижнего основания. В результате получим точку T. После того как точки T и P соединены, сечение построено.

Несколько усложним задачу.

Пример 2. Построить сечение куба, проходящее через точки P, Q и R, расположенные так, как показано на рис. 4.2.

В этом случае одной вспомогательной точки окажется недостаточно. Хотя из рис. 4.2 видно, что сечение не пересечет плоскость нижнего основания, нужно построить след плоскости сечения на нижнем основании. Точку S мы построим так же, как в примере 1,

а вторую точку T найдем, продолжив отрезки RQ и AD. След ST пересечет прямую BC в точке U. Так как точки U и P лежат в плоскости сечения, то, соединив их, найдем точку V, принадлежащую сечению куба, которая позволит завершить построение.

Пример 3. Построить сечение куба, проходящее через точку R, расположенную на передней грани куба, и точки P и Q — на ребрах задней его грани (рис. 4.3).

И на этот раз нам поможет построение следа плоскости сечения на плоскости нижнего основания. Чтобы было ясно, что точка R лежит на плоскости передней грани куба, спроецируем ее на основание. Проекция прямой PR и прямая PR пересекутся в точке S, принадлежащей следу. Вторую точку U следа мы получим, продолжив до пересечения BC и PQ. След US пересечет куб по отрезку . Продолжим  TR до пересечения с DD1 в точке G. Чтобы закончить построение, получим еще одну вспомогательную точку F так, как это было сделано в первом примере.

Построение теней осуществляется с помощью тех же самых приемов. При этом нужно в качестве вспомогательной точки использовать проекцию источника света на плоскость, на которую падает тень.

Построим, например, тень, отбрасываемую вертикальной спичкой AB на плоскость P (концом В спичка упирается в плоскость), если источник света расположен в точке Q, а точка Q1 есть проекция точки Q на плоскость P (рис. 4.4, а). Проведем две прямые AQ и BQ1, пересекающиеся в точке А1. Отрезок А1В и будет тенью спички AB.

Если спичка AB расположена между плоскостью P и источником света Q произвольным образом, то построение тени показано на рис. 4.4, б. Предполагается, что проекции точек А, В и Q (это точки СD и Q1 соответственно) на плоскость P заданы или могут быть найдены. Вместо того чтобы строить тень спички AB, мы строим тени А1С и В1D двух вертикальных спичек AC и ВD, а затем, соединив точки А1 и В1, получаем нужную тень. Проекция спички AB на плоскость P фактически задана. Это отрезок CD. Тенью, отбрасываемой этой спичкой на плоскость P, если источник света расположен в точке Q, будет отрезок А1В1.

Пример 4. Источник света расположен над плоскостью нижнего основания куба в точке Q на высоте, вдвое превышающей ребро куба (рис. 4.5). Построить

тень, отбрасываемую кубом на плоскость его нижнего основания.

Разумеется, можно было бы построить отдельно тени, отбрасываемые каждым вертикальным ребром куба, а затем соединить соответствующие вершины. Однако здесь проще воспользоваться тем, что ребра верхнего основания куба параллельны плоскости нижнего основания. Следовательно, тенью, отбрасываемой верхним основанием куба, будет квадрат. Поскольку QQ1 вдвое больше ребра куба, то сторона этого квадрата будет равна 2 а (докажите).

Если мы проведем в кубе линию центров оснований и построим отбрасываемую ею тень, то не составит труда вычертить тень, отбрасываемую всем верхним основанием, а затем и всем кубом (см. рис. 4.5).

4.1. Дан куб ABCDА1В1С1D1. Через вершину А, середину E ребра BC и центр O грани СС1D1D проходит секущая плоскость. Найдите отношение, в котором она делит объем куба.

4.2. Дан куб ABCDА1В1С1D1 с ребром, равным единице. Найдите площадь сечения куба плоскостью, проходящей через вершину А и середины F и G ребер В1С1 и С1D1.

4.3. В кубе ABCDА1В1С1D1 проведена плоскость через вершину А, центр O1 верхнего основания А1В1С1D1 и центр Q боковой грани ВВ1С1С. Пусть E — точка пересечения секущей плоскости с ребром В1С1. Найдите отношение В1E к ЕС1.

4.4. Дана правильная четырехугольная пирамида SABCD. Сторона CD продолжена на расстояние MD = 2CD (MC = 3CD). Через точку M, вершину В и середину ребра SC проведена плоскость. Найдите отношение объемов частей пирамиды, полученных при пересечении ее этой плоскостью.

4.5. Дана правильная четырехугольная пирамида SABCD с вершиной S. Через точки А, D и середину ребра SC проведена плоскость. В каком отношении эта плоскость делит объем пирамиды?

4.6. Дан куб ABCDА1В1С1D1. На продолжении ребер AB, АА1AD отложены соответственно отрезки ВР, А1QDR длины 1,5АВ. Через точки P, QR проведена плоскость. В каком отношении эта плоскость делит объем куба?

Поделиться:
Популярные книги

Кто ты, моя королева

Островская Ольга
Любовные романы:
любовно-фантастические романы
7.67
рейтинг книги
Кто ты, моя королева

Камень. Книга восьмая

Минин Станислав
8. Камень
Фантастика:
фэнтези
боевая фантастика
7.00
рейтинг книги
Камень. Книга восьмая

Бывшие. Война в академии магии

Берг Александра
2. Измены
Любовные романы:
любовно-фантастические романы
7.00
рейтинг книги
Бывшие. Война в академии магии

Вернуть невесту. Ловушка для попаданки

Ардова Алиса
1. Вернуть невесту
Любовные романы:
любовно-фантастические романы
8.49
рейтинг книги
Вернуть невесту. Ловушка для попаданки

Генерал Империи

Ланцов Михаил Алексеевич
4. Безумный Макс
Фантастика:
альтернативная история
5.62
рейтинг книги
Генерал Империи

Попаданка в академии драконов 2

Свадьбина Любовь
2. Попаданка в академии драконов
Любовные романы:
любовно-фантастические романы
6.95
рейтинг книги
Попаданка в академии драконов 2

Зеркало силы

Кас Маркус
3. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Зеркало силы

Законы Рода. Том 5

Flow Ascold
5. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 5

Прометей: повелитель стали

Рави Ивар
3. Прометей
Фантастика:
фэнтези
7.05
рейтинг книги
Прометей: повелитель стали

Кодекс Охотника. Книга XVII

Винокуров Юрий
17. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVII

Ох уж этот Мин Джин Хо – 3

Кронос Александр
3. Мин Джин Хо
Фантастика:
попаданцы
5.00
рейтинг книги
Ох уж этот Мин Джин Хо – 3

Барон устанавливает правила

Ренгач Евгений
6. Закон сильного
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Барон устанавливает правила

Шлейф сандала

Лерн Анна
Фантастика:
фэнтези
6.00
рейтинг книги
Шлейф сандала

Адвокат

Константинов Андрей Дмитриевич
1. Бандитский Петербург
Детективы:
боевики
8.00
рейтинг книги
Адвокат