Сборник задач по математике с решениями для поступающих в вузы
Шрифт:
Ответ. a/3.
3.35. Из соображений симметрии ясно, что точка O лежит на диагонали AC1 куба. Для доказательства достаточно установить, что плоскость KMN (рис. P.3.35) перпендикулярна к АС1 и что АС1 проходит через точку O1, являющуюся центром треугольника KMN.
По теореме о трех перпендикулярах АС1 BD. Следовательно, АС1 KN.
Треугольник KMN равносторонний. Так как AK = AN = AM, то из равенства соответствующих треугольников, имеющих общие вершины в точках А и О1, получаем KO1 = NO1 = MO1.
Мы доказали, что центр О сферы лежит на продолжении отрезка АС1.
Так как AK — биссектриса в треугольнике OKO1, то
Подставив все эти выражения в пропорцию
6R^2 - 26 aR– 3а^2 = 0.
Геометрический смысл имеет только положительный корень.
Ответ.
3.36. Докажем вначале, что каждая сторона четырехугольника параллельна биссектральной плоскости двугранного угла, образованного данными взаимно перпендикулярными плоскостями. Перенесем сторону четырехугольника параллельно себе так, чтобы одна из ее вершин лежала на ребре этого двугранного угла (рис. P.3.36, а). Полученный отрезок RS спроецируем на плоскости P и Q. Так как проекции при параллельном переносе не изменяются, то RS1 = RS2 = 1. Построим линейный угол S1TS1, измеряющий двугранный угол между плоскостями P и Q, и соединим точки S и T. Треугольники RS1T и RS2T и треугольники RS1S и RS2S попарно равны, т. е. прямоугольные треугольники S1ST и S2ST — равные и равнобедренные. Следовательно, углы STS1 и STS2 равны 45°, а это означает, что сторона данного четырехугольника параллельна биссектральной плоскости. Проведя аналогичные рассуждения для каждой стороны, придем к выводу, что плоскость четырехугольника параллельна биссектральной плоскости.
Перенесем теперь плоскость P параллельно так, чтобы четырехугольник уперся в нее одной из своих вершин, которую обозначим буквой А (рис. P.3.36, б).
Спроецируем четырехугольник ABCD
Построим теперь след, оставленный плоскостью четырехугольника ABCD на плоскости P. Для этого построим вначале точку E, в которой пересекаются прямые BC и В1С1, а затем соединим E и А. Угол между плоскостями ABCD и P измерим линейным углом BFB1, равным 45°. Остается провести вычисления:
Ответ. 5 + 7 .
3.37. Опишем около данной пирамиды конус с образующей l, высотой H и радиусом нижнего основания R. Объем конуса больше объема пирамиды. Если мы докажем, что объем конуса меньше куба образующей, то задача тем самым будет решена.
Рассмотрим угол между H и l. Тогда
H = l cos , R = l sin ,
а объем конуса равен
V = /3 R^2H = /3 l^3 sin^2 cos .
Составим отношение:
V/l^3 = 1/3 sin^2 cos = /6 sin 2 sin <= /6 < 1,
что и доказывает сформулированное в условии утверждение.
3.38. B осевом сечении конуса получим картину, изображенную на рис. P.3.38.
По условию r = pR. Из подобия треугольников ЕОВ и FO1B получим
r/R = H– 2R - r/H– R, т. е. H = 2R^2/R– r,
а из подобия треугольников AOB и ОЕВ (AB = l) найдем
l/ = H– R/R, (5)
т. е.
l = H– R/R = 1 + p/1 - p.