Чтение онлайн

на главную - закладки

Жанры

Сборник задач по математике с решениями для поступающих в вузы

Ваховский Евгений Борисович

Шрифт:

Составим разности:

bсd(np), са = d(pm), аb = d(mn).

Подставим в левую часть равенства, которое нужно доказать:

После несложных преобразований получим в обоих показателях нули, что и доказывает равенство произведения единице.

19.4. Перейдем в

левой части равенства к общему основанию x и сделаем некоторые упрощения:

В последнем равенстве мы воспользовались тем, что b/ac/bq — знаменателю прогрессии, а также тем, что 

19.5. Имеем

Ответ.

19.6. Преобразуем выражение, стоящее под знаком квадратного корня:

После извлечения квадратного корня получим

19.7. Из условия следует, что

а следовательно, (а1a3)^2 = 0, а1 = а3. Поскольку

, то а2 = а1. Таким образом, а1 = а2 = а3. Решим теперь систему уравнений

Первое уравнение можно последовательно преобразовать:

Подставив найденное значение x во второе уравнение системы, получим

Теперь можно найти x:

x = -2 log2 y = 1/2 log2 5.

Ответ.

19.8. Пусть q — знаменатель прогрессии. Тогда по теореме Виета

x1(1 + q) = 3, x1q^2(1 + q) = 12, x1^2q = A, x1^2q5 = B.

Из первых двух уравнений (подстановкой первого во второе) находим q^2 = 4.

Так как последовательность по условию является возрастающей, то q = 2,

откуда x1 = 1, что не противоречит тому, что прогрессия возрастающая.

Из двух вторых уравнений определяем А и В.

Ответ. А = 2, В = 32.

19.9. Пусть x2 = x1q, x3 = x1q^2. Тогда по теореме Виета, примененной к данному уравнению, имеем

x1 + x1q + x1q^2 = 7, x1^2q + x1^2q^2 + x1^2q^3 = 14.

Из первого уравнения получим x1(1 + q + q^2) = 7. Это позволяет следующим образом преобразовать левую часть второго уравнения:

x1^2q(1 + q + q^2) = 7x1q,

откуда x1 = 2/q. Подставим выражение для x1 в первое уравнение, получим

2(1 + q + q^2)/q = 7, т. е. 2q^2 - 5q + 2 = 0,

откуда

q1 = 1/2 , q2 = 2.

Теперь для каждого из этих двух значений q можно найти x1. При q = 1 получим, что x1 = 4, т. е. прогрессия убывающая. Во втором случае при q = 2 имеем x1 = 1, и прогрессия — возрастающая.

Ответ. 1, 2, 4.

19.10. Из условия следует, что

Произведение n первых членов прогрессии равно

Ответ. 2.

19.11. Пусть а — цифра сотен, d — разность прогрессии. Искомое число делится на пять, если его последняя цифра либо 0, либо 5, т. е. либо а + 2d = 0, либо а + 2d = 5. Чтобы число делилось на девять, сумма его цифр должна делиться на девять. Но поскольку сумма трех цифр может изменяться от нуля до двадцати семи, имеются три возможности:

а + (а + d) + (а + 2d) = 9; 18; 27.

Последнюю возможность отбрасываем, так как число 999 не делится на пять.

Пусть а + 2d = 0. Если аd = 3, то d = -3, а = 6. Получим число 630. Если аd = 6, то d = -6, а = 12, что невозможно.

Поделиться:
Популярные книги

Вперед в прошлое 2

Ратманов Денис
2. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 2

Черный Маг Императора 9

Герда Александр
9. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 9

Магия чистых душ 2

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.56
рейтинг книги
Магия чистых душ 2

Пятничная я. Умереть, чтобы жить

Это Хорошо
Фантастика:
детективная фантастика
6.25
рейтинг книги
Пятничная я. Умереть, чтобы жить

Мастер Разума VII

Кронос Александр
7. Мастер Разума
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер Разума VII

Ученик. Книга вторая

Первухин Андрей Евгеньевич
2. Ученик
Фантастика:
фэнтези
5.40
рейтинг книги
Ученик. Книга вторая

Последний наследник

Тарс Элиан
11. Десять Принцев Российской Империи
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний наследник

Отверженный IX: Большой проигрыш

Опсокополос Алексис
9. Отверженный
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Отверженный IX: Большой проигрыш

Барон Дубов 2

Карелин Сергей Витальевич
2. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов 2

Нечто чудесное

Макнот Джудит
2. Романтическая серия
Любовные романы:
исторические любовные романы
9.43
рейтинг книги
Нечто чудесное

Светлая тьма. Советник

Шмаков Алексей Семенович
6. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Светлая тьма. Советник

Боярышня Евдокия

Меллер Юлия Викторовна
3. Боярышня
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Боярышня Евдокия

Сотник

Ланцов Михаил Алексеевич
4. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Сотник

Последняя Арена 6

Греков Сергей
6. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 6