Чтение онлайн

на главную

Жанры

Сборник задач по математике с решениями для поступающих в вузы

Ваховский Евгений Борисович

Шрифт:

то напрашивается способ, с помощью которого можно преобразовать систему в распадающуюся.

9.19. Если раскрыть скобки, то получим систему линейных уравнений относительно u = x + у + zv = хуxz + yz, w = xyz. Найдя uv и w, можно вычислить х^3 + у^3 + z^3,

если возвести x + у + zu в куб: u^3 = х^3 + у^3 + z^3 + 3uv– 3w.

Однако такой путь решения, хотя и прост по идее, требует значительных выкладок. Решение можно упростить, если ввести в рассмотрение многочлен M(t) = (tx)(tу)(tz) + а, который в силу условия задачи имеет корни t = а, t = b, t = с.

9.20. Первые два уравнения системы симметричны относительно x и у. Нужно использовать эту симметрию для того, чтобы получить одинаковые правые части у этих двух уравнений.

9.21. Если второе уравнение возвести в квадрат, то можно сравнить два выражения для (x + у)^2. (!)

9.22. В первое уравнение входит у, в последующие уt, yt^2 и yt^3 соответственно. Эта закономерность позволяет исключить у.

9.23. Каждый элемент, стоящий в левой части второго уравнения, получается из соответствующего элемента, стоящего в левой части первого уравнения, возведением в квадрат. Нужно использовать это свойство системы.

9.24. Левые части всех трех уравнений симметричны относительно x, у, z. Поэтому, подвергнув какому-то преобразованию любые два уравнения системы, разумно сделать то же самое и с оставшимися двумя парами уравнений.

9.25. Если известна сумма s = x1 + x2 + ... + xn, то из каждого уравнения можно найти соответствующее xk.

9.26. Чтобы избежать возведения двучлена в третью и, тем более, в пятую степень, нужно ввести новые неизвестные так, чтобы выражение 7x– 11у было одним из этих неизвестных.

9.27. Поскольку

 входит в оба уравнения с разными знаками, а у — с одинаковыми, то естественно сложить данные уравнения и вычесть. При этом мы приходим к системе, у которой слева стоят сумма
и разность одинаковых радикалов, а справа — разные радикалы.

9.28. Чтобы левые части уравнений стали однородными относительно неизвестных, удобно ввести новое неизвестное z = у.

9.29. Если каждое из уравнений возвести в квадрат, то получим систему относительно u = x^2 и v = у^2. Проверка здесь может оказаться довольно сложной, поэтому целесообразно следить за равносильностью в процессе решения. Чтобы в результате возведения в квадрат не появились посторонние решения, достаточно записать ограничения: x > 0, у > 0.

9.30. Все члены системы, содержащие x и у, однородны второй степени относительно x и у. Пусть данная система имеет решения x1, у1, z1 Укажите симметричное решение, которое наряду с этим будет иметь система.

9.31. Поскольку вместе с условием x + у = 0 мы получаем три уравнения с двумя неизвестными, то имеет смысл воспользоваться подстановкой у = -x.

9.32. Поскольку данная система должна иметь решение при любом b, то, чтобы сузить область допустимых значений а, можно рассмотреть эту систему при некотором фиксированном b.

9.33. Вначале нужно использовать условие, что система должна иметь только одно решение. Второе уравнение можно рассматривать как четную функцию относительно x и у, т. е. наряду с решением x = x1, у = у1 оно имеет три симметричных решения: (-x1, у1), (x1, -у1), (-x1, -у1). Какое из этих решений наряду с (x1, у1) будет удовлетворять первому уравнению?

9.34. Второе уравнение можно преобразовать к виду

умножив числитель и знаменатель дроби на выражение, сопряженное знаменателю. Легко убедиться, что у /= 0. Поэтому можно полученное уравнение разделить на у, после чего нетрудно с помощью первого уравнения системы исключить

9.35. Представить уравнение в виде

|6 - |x– 3| - |x + 1|| = а(x + 5) + 4,

Поделиться:
Популярные книги

И вспыхнет пламя

Коллинз Сьюзен
2. Голодные игры
Фантастика:
социально-философская фантастика
боевая фантастика
9.44
рейтинг книги
И вспыхнет пламя

Амазония

Роллинс Джеймс
101. Книга-загадка, книга-бестселлер
Приключения:
прочие приключения
9.34
рейтинг книги
Амазония

В зоне особого внимания

Иванов Дмитрий
12. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
В зоне особого внимания

Девочка-лед

Джолос Анна
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Девочка-лед

Последняя Арена 2

Греков Сергей
2. Последняя Арена
Фантастика:
рпг
постапокалипсис
6.00
рейтинг книги
Последняя Арена 2

Измена. Тайный наследник

Лаврова Алиса
1. Тайный наследник
Фантастика:
фэнтези
5.00
рейтинг книги
Измена. Тайный наследник

Убивать чтобы жить 2

Бор Жорж
2. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 2

Уязвимость

Рам Янка
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Уязвимость

Граф Суворов 7

Шаман Иван
7. Граф Суворов
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Граф Суворов 7

Золушка по имени Грейс

Ром Полина
Фантастика:
фэнтези
8.63
рейтинг книги
Золушка по имени Грейс

Черный Маг Императора 9

Герда Александр
9. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 9

Идеальный мир для Лекаря 11

Сапфир Олег
11. Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 11

Имя нам Легион. Том 11

Дорничев Дмитрий
11. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 11

Дурашка в столичной академии

Свободина Виктория
Фантастика:
фэнтези
7.80
рейтинг книги
Дурашка в столичной академии