Сборник задач по математике с решениями для поступающих в вузы
Шрифт:
11.21. Нужно заметить, что 243 = 35, 1024 = 210. Теперь из второго уравнения системы с помощью первого нетрудно получить уравнение относительно ( 2/3 )y.
11.22. Для того чтобы найти 4x + у, можно второе уравнение возвести в степень 3/2 и полученное выражение использовать для подстановки в первое уравнение системы.
11.23. Выразить 11xz, 11z
11.24. Если в левой части второго уравнения вынести за скобки 2x + 2у, то в скобках останется выражение, аналогичное левой части первого уравнения. Его можно заменить числом 2.
11.25. Здесь удобно не заботиться о равносильности, а каждый раз получать следствия. Алгебраическая система, которая будет получена, легко сводится к уравнению относительно u = у/x. Для этого нужно будет почленно перемножить входящие в нее уравнения.
11.26. При преобразовании выражений, входящих в первое уравнение (после подстановки), нужно будет воспользоваться определением логарифма.
11.27. Так как xy = 3, то либо x, либо у больше единицы. Мы убедились, что x и у положительны. Следовательно,
x + y > 1 и |log2 (x + у)| = log2 (x + у).
Остается рассмотреть два случая в зависимости от знака log2 (x– у).
11.29. Воспользоваться математической записью определения логарифма: аlogab = b.
11.30. Определив x, следует использовать его для упрощения третьего уравнения системы. Если третье уравнение преобразовать в алгебраическое, то посмотрите, что при этом может произойти — потеря или приобретение корней.
K главе 12
12.2. Доказательство следует начать с очевидного тождества
tg [(30° - ) + (60° - )] = ctg 2.
12.3. Воспользоваться тем, что
12.6. Вычислить произведение синусов несколько труднее. Удобнее найти квадрат этого произведения, записав 2 sin2 /7 как 1 - cos 2/7 и т. д.
12.7. Разделить числитель и знаменатель выражения, стоящего в правой части, на Вb.
12.8. Если заменить sin^2 x на k^2 sin^2 у, то sin^2 у можно вынести за скобки.
12.9. Выразить а^2 + b2 через cos – /2 .
12.10.
12.11. Привести к общему знаменателю и все произведения тригонометрических функций от + /3 и + 2/3 преобразовать в сумму.
12.13. Второе слагаемое преобразуется к выражению -2 cos^2 8° или cos 16° - 1.
К главе 13
13.1. Заменить 2 sin (x + /4) на sin x + cos x, после чего объединить все одночлены, содержащие cos Зx, и все оставшиеся одночлены уравнения. Это поможет получить распадающееся уравнение, y которого в правой части нуль, а левая разложена на множители.
13.2. Если левую часть представить в виде
13.3. Левую часть уравнения записать в виде
Оставшееся в скобках выражение симметрично относительно sin x и cos x. Если привести дроби к общему знаменателю, то должно получиться достаточно простое выражение, поскольку все подобные члены будут иметь разные знаки.
13.4. Найти такие решения уравнения sin 2x sin 7x = cos 2x cos 7x, при которых cos 2x cos 7x /= 0.
13.5. Замена ctg x = 1/tg x приведет к появлению tg x множителем в числителе. Однако tg x не может быть равным нулю.
13.6. Воспользоваться формулой разности тангенсов и заменить полученное уравнение эквивалентной ему системой, состоящей из нового уравнения и ограничений.
13.7. Множитель sin (x + /4) входит в правую часть уравнения. Чтобы обнаружить это, достаточно заменить cos x на sin (/2 - x) и привести правую часть к виду, удобному для логарифмирования.
13.8. После приведения к виду, удобному для логарифмирования, внимательно следить за равносильностью.
13.9. Так как cos x/2 на интервале 0 < x/2 < меняет знак, то этот интервал придется разбить на два: 0 < x/2 <= /2 , /2 < x/2 < .