Сборник задач по математике с решениями для поступающих в вузы
Шрифт:
13.10. При решении получившегося уравнения нужно правильно оценить роль параметра: если из соотношения исчезает неизвестное и остается только параметр, то при данном значении параметра неизвестное может принимать любое значение из области определения данного уравнения.
13.11. Выбор значений x, попадающих в интервал 0 <= x <= 2, удобнее осуществить, если при решении мы постараемся воспользоваться арккосинусами, областью значений которых является указанный интервал.
13.12. Под радикалом стоит полный квадрат. Помните, что
13.13.
Получаем уравнение вида tg 1/2 x (x) = 0, где (x) имеет смысл всегда. Это уравнение равносильно совокупности уравнения tg x = 0 и системы
(B ограничении взято строгое неравенство, так ка случай tg x = 0 учтен раньше.)
13.14. Чтобы произвести упрощения, придется воспользоваться еще одним условным тождеством 1/tg 2x = ctg 2x. Провести анализ равносильности и перейти в полученном уравнении к синусам и косинусам.
13.15. Когда в уравнение входят только sin cos и sin + cos , то одну из этих величин, например вторую, можно обозначить через y, а другую выразить через y.
13.16. Перейти к функциям x и привести уравнение к однородному, домножив 6 sin x на тригонометрическую единицу.
13.17. Воспользоваться теоремой о рациональных корнях многочлена с целыми коэффициентами.
13.18. Выразить правую и левую части через y = cos x/2.
13.19. Выражение в квадратных скобках представить в виде
(1 + ctg x) + [ 1 + ctg (/4 - x) ]
и воспользоваться формулой суммы котангенсов. B правой части для cos 2 x нужно выбрать выражение, которое позволит избавиться от стоящей в скобках единицы.
13.21. Относительно cos x получится биквадратное уравнение, решения которого придется исследовать.
13.24. Воспользоваться этой формулой еще раз, предварительно выделив выражение 1 + cos 2x, и получить распадающееся уравнение. (!!)
Вспомнить
13.25. Записывая условие одновременного равенства двух косинусов единице или минус единице, следует брать разные обозначения для целочисленного переменного.
13.26. Если перенести все в правую часть, то мы сможем образовать сумму двух неотрицательных слагаемых.
13.27. Так как cos 3x >= 0, а при дополнении до полного квадрата к обеим частям уравнения прибавляется ± cos x cos 3x, то знак правой части зависит от знака cos x. Это означает, что целесообразно рассмотреть три случая: cos x = 0, cos x > 0, cos x < 0. (!!)
Если cos x > 0, то целесообразно привести левую часть к квадрату разности, а если cos x < 0 — к квадрату суммы.
13.28. Поскольку минимум левой части совпадает с максимумом правой, то единственная возможность их уравнять — решить систему
13.29. При решении окажется полезной следующая идея. Если уравнение преобразуется к виду f(x) g(x) = 0, причем корни f(x) находятся легко и содержат все корни g(x), то решать уравнение g(x) не следует. Поскольку в нашем случае уравнение f(x) g(x) = 0 было получено из системы, то остается выяснить, какие из корней уравнения f(x) = 0 приведут к решению исходной системы.
13.30. Первое уравнение можно привести к виду
При подстановке 2y = /4 – x + k приходится рассматривать случаи k = 2p и k = 2p + 1.
13.31. Относительно и и v получится система уравнений, которую удобно решить заменой v = ut.
13.32. С помощью второго уравнения выразить y через x и подставить в первое уравнение системы.
13.33. При решении системы нам придется оба уравнения возводить в квадрат. Следовательно, в конце необходимо сделать проверку.
13.34. Получив из второго уравнения после подстановки в него найденного значения x выражение для |y|, нужно позаботиться о том, чтобы |y| >= 0.