Чтение онлайн

на главную - закладки

Жанры

Шрифт:
Рис. 3.60
В
иллюстрации Комптон-эффекта (слева вверху), вызывающего формирование ЭМИ ЯВ, многие объекты стилизованы: электромагнитные излучения изображены простыми синусоидами, хотя они представляют колебания напряженностей электрического и магнитного полей. Изображение атома несколько ближе к реальности: электроны в нем не представляют компактные частицы, вращающиеся по орбитам, а в соответствии с принципом Гайзенберга «размазаны» по ним (автор также попытался изобразить орбиты, соответствующие различным энергетическим состояниям). Принцип неопределенности следует из квантовой природы частиц: точности одновременного определения координаты и скорости частицы связаны константой. Характерный размер ядра на несколько порядков меньше размеров электронных орбит (а не в несколько раз, как на рисунке), но в ядре сосредоточена практически вся масса атома. Оно также может находиться в различных энергетических состояниях (основном или возбужденных).
Углы рассеяния и отдачи при Комптон-эффекте невелики, так что от точки взрыва расходится ток электронов, быстро опережающих намного более тяжелые ионы, за счет чего происходит разделение зарядов (справа вверху). Сферически-симметричная система зарядов излучать не может, однако плотность воздуха меняется с высотой, что вносит асимметрию и в плотность зарядов. Параметры такого электрического диполя при движении зарядов разных знаков меняются, при этом генерируется излучение, мощность которого пропорциональна второй производной дипольного момента по времени.
Деформация магнитного поля образованным ядерным взрывом, хорошо проводящим плазмоидом (не в масштабе, в центре справа) вызывает излучение вследствие изменения магнитного момента.
Помимо Комптон-эффекта, при ядерном взрыве на большой высоте происходят и другие взаимодействия, вызывающие переходы атомов (в основном — кислорода и азота) на возбужденные уровни и последующее их высвечивание в различных областях видимой части спектра. Становится видна структура магнитных силовых линий нашей планеты (внизу слева), а также происходит красивое явление, известное как «северное сияние» (естественным образом оно вызывается потоками заряженных частиц от вспышек на Солнце)

Но возникновение ЭМИ — не только результат «закручивания» электронов. Вклад вносит и излучение электрического диполя, образованного носителями разных знаков (плотность зарядов меняется с высотой, вверху справа). Еще одна причина — возмущение проводящим плазмоидом магнитного поля Земли.

Все эти явления приводят к формированию непрерывного спектра (континуума) ЭМИ ЯВ — совокупности волн в огромном частотном диапазоне. Лишь колебания с частотами от десятков килогерц до сотен мегагерц вносят заметный энергетический вклад, но и эти волны ведут себя по-разному: те, чьи частоты превышают мегагерцы, затухают в атмосфере, а низкочастотные — «оборачиваются» в естественном волноводе между поверхностью Земли и ионосферой, помногу раз огибая земной шар. Правда, «долгожители» напоминают о своем существовании лишь хрипением в приемниках, похожим на «голоса» грозовых разрядов, а вот их более высокочастотные родственники заявляют о себе весьма опасными для аппаратуры «щелчками».

Казалось бы, длинноволновое излучение вообще должно быть безразлично военной электронике — такой ложный вывод подсказывает известная из курса электродинамики теорема взаимности: эффективности приема и излучения любым устройством волн одинаковых частот в данном направлении жестко связаны, чем выше первая, тем выше и вторая [70] . А принимает и излучает военная электроника в гораздо более высокочастотных, чем ЭМИ ЯВ, диапазонах, что и понятно: при создании оружия всемерно «ужимают» габариты, а чем меньше длина волны, тем меньше и размеры антенны.

70

Для этой теоремы существует остроумное практическое применение. Представьте, что необходимо определить, насколько, при внешнем облучении весьма сложного устройства, ослабляется РЧЭМИ данной частоты в наиболее уязвимой и малоразмерной его части (например — в электродетонаторе). Расчетным методам в подобной ситуации верят только патологические оптимисты, а разместить в мизерном объеме электродетонатора аппаратуру регистрации нереально. Но можно поместить там миниатюрный излучатель (например — на основе диода Ганна) и, «обходя» с аппаратурой изделие, определить, как будет изменяться регистрируемая мощность. Полученная зависимость будет в точности совпадать с зависимостью, описывающей воздействие на уязвимый объект при облучении изделия с разных направлений.

Действительно,

в соответствии с законами электродинамики, ЭМИ ЯВ индуцирует в малогабаритных антеннах ничтожные сигналы, но оно же «выбирает» в качестве антенн другие элементы конструкции: если ракету длиной в 10 метров «накрывает» длинная волна с не поражающей воображение напряженностью электрического поля в 100 В/см, то на металлическом ракетном корпусе наводится разность потенциалов в 100 тысяч вольт! Мощные импульсные токи через заземляющие связи «затекают» в схемы, да и сами точки заземления на корпусе оказываются под существенно отличающимися потенциалами, что тоже ведет к протеканию больших токов. Токовые перегрузки опасны для полупроводниковых элементов: для того, чтобы «сжечь» высокочастотный диод, достаточно импульса мизерной (в десятимиллионную долю Джоуля) энергии. ЭМИ занял почетное место могущественного поражающего фактора — иногда им выводилась из строя аппаратура за тысячи километров от ядерного взрыва — такое было не по силам ни ударной волне, ни световому импульсу.

Понятно, были оптимизированы и параметры вызывающих ЭМИ взрывов (в основном это — высота подрыва заряда данной мощности). Разрабатывались и меры защиты: аппаратура снабжалась дополнительными экранами, охранными разрядниками. Ни один образец боевой техники не принимался на вооружение, пока не была доказана испытаниями — натурными или на специально созданных имитаторах (рис. 3.61) — его стойкость к ЭМИ ЯВ — по крайней мере такой интенсивности, которая характерна для не слишком уж больших дистанций от взрыва.

Рис. 3.61
База ВВС США Кёртлэнд. Испытания стойкости электронного оборудования бомбардировщика В-52 — ветерана стратегической авиации, вот уже полвека находящегося в строю. Этот уникальный самолет останется на вооружении и в 30-х годах XXI века. Поскольку длины волн ЭМИ ЯВ — сотни метров, огромны и размеры антенны, излучающей имитирующий импульс (для сравнения: длина самолета — 48 м, размах крыльев — 56 м). Установка сделана из дерева, чтобы не вносить искажений в распределение полей, и представляет самое большое в мире сооружение из этого материала

…Если нет или очень мало вокруг воздуха, то нет и главного поражающего фактора наземного ядерного взрыва — ударной волны: ей просто не из чего образоваться. Именно так и обстоит дело на рубежах противоракетной обороны, когда необходимо перехватить боевой блок противника. Сделать это предпочтительнее на большой высоте, чтобы даже в случае подрыва блока не пострадали объекты, на которые он нацелен. Но на больших высотах плотность газов столь низка, что они способны только не очень ярко светиться (рис. 3.62). Правда, в безвоздушном пространстве возрастает выход электромагнитного излучения различных частот, но помогает это мало: лучистая энергия поверхность блока, конечно, нагревает, но ведь он и рассчитан на преодоление теплового барьера при входе в атмосферу — снабжен обгорающим (абляционным) теплозащитным покрытием (рис. 3.63). Заряд с повышенным выходом рентгеновского излучения (не «мягкого», а очень жесткого) может нанести поражение электронике, но на небольшом расстоянии, поскольку излучение заметно ослабится в корпусе, сделанном из тяжелого металла. Нейтроны же корпус свободно «проскакивают» и бьют в «сердце» боевого блока — сборку, содержащую делящееся вещество. Ядерный взрыв при этом невозможен — сборка-то пока докритична — но нейтроны порождают в ней много затухающих цепей деления, внутренний «подогрев» от которых может сборку и развалить, но, даже если облучающих нейтронов для этого недостаточно, «подсвеченный» заряд сработает потом с пониженным энерговыделением [71] .

71

Читатель наверняка помнит о нецепном делении U238 от термоядерных нейтронов. А уж тем более нейтроны способны «выжечь» U235 илиPu239 даже и в докритической сборке, поскольку каждый прореагировавший нейтрон вызовет в ней не единственное деление, а цепь, пусть и затухающую. Правда, для полного «выжигания» необходимо огромное количество, без преувеличения — килограммы нейтронов.

Рис. 3.62
На высотах порядка сотни километров плотность газов очень низка, но об их присутствии свидетельствуют те же фотографии ядерных взрывов. Слева — фотография взрыва Kingfish, мощностью около 1 Мт на высоте 97 км. Красное свечение вызвано возбуждением атомов (не молекул!) кислорода. Справа — тот же эффект после взрыва на меньшей высоте, где преобладает вызванное возбуждением электронами молекул воздуха и последующим их высвечиванием синего цвета
Поделиться:
Популярные книги

Идеальный мир для Лекаря 5

Сапфир Олег
5. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 5

Вечный. Книга III

Рокотов Алексей
3. Вечный
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга III

Кай из рода красных драконов

Бэд Кристиан
1. Красная кость
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Кай из рода красных драконов

Эволюционер из трущоб. Том 5

Панарин Антон
5. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб. Том 5

Лейб-хирург

Дроздов Анатолий Федорович
2. Зауряд-врач
Фантастика:
альтернативная история
7.34
рейтинг книги
Лейб-хирург

Флеш Рояль

Тоцка Тала
Детективы:
триллеры
7.11
рейтинг книги
Флеш Рояль

Не грози Дубровскому! Том II

Панарин Антон
2. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том II

Измена. Отбор для предателя

Лаврова Алиса
1. Отбор для предателя
Фантастика:
фэнтези
5.00
рейтинг книги
Измена. Отбор для предателя

Сотник

Ланцов Михаил Алексеевич
4. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Сотник

Стеллар. Трибут

Прокофьев Роман Юрьевич
2. Стеллар
Фантастика:
боевая фантастика
рпг
8.75
рейтинг книги
Стеллар. Трибут

Птичка в академии, или Магистры тоже плачут

Цвик Катерина Александровна
1. Магистры тоже плачут
Фантастика:
юмористическое фэнтези
фэнтези
сказочная фантастика
5.00
рейтинг книги
Птичка в академии, или Магистры тоже плачут

Ненаглядная жена его светлости

Зика Натаэль
Любовные романы:
любовно-фантастические романы
6.23
рейтинг книги
Ненаглядная жена его светлости

Сердце Дракона. Том 10

Клеванский Кирилл Сергеевич
10. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.14
рейтинг книги
Сердце Дракона. Том 10

Красноармеец

Поселягин Владимир Геннадьевич
1. Красноармеец
Фантастика:
боевая фантастика
попаданцы
4.60
рейтинг книги
Красноармеец