Шипение снарядов
Шрифт:
Сложно удержаться от восхищения ярким образом, хотя из него следует и некомплиментарный вывод: всякое устройство имеет пределы работоспособности, и если регистрируемая им в нормальном режиме мощность очень и очень мала, то мощность сигнала, который оно «не вынесет» и выйдет из строя, тоже не слишком велика. Образно говоря — достаточно бросить горстку песка, чтобы настроенная крайне патриотически, но ничего не «видящая» дура, весом более тонны, с обиженным ревом пронеслась мимо, оставив, как напоминание о себе, лишь зловоние сгоревшего смесевого топлива. Ну а механической мухе — не песка, а ничтожной песчинки надо, чтобы, забыв о постыдных порнографических экзерсисах, хлопнулась неслышно она на спинку и, посучив конвульсивно крылышками из полиэтилен-терефталата, затихла навсегда…
…Обретение радиочастотным электромагнитным излучением (РЧЭМИ) свойств поражающего фактора произошло как в результате создания мощных его источников, так и эволюции элементной базы электроники: на смену лампам, которые невозможно «сжечь», пришли микросхемы, размеры полупроводниковых элементов в которых непрерывно уменьшаются и в настоящее время составляют доли микрона. Между тем, понятно, что, с уменьшением размеров полупроводниковых элементов, снижается и их стойкость к токовым перегрузкам, так что появление и совершенствование ЭМО противостоит этой тенденции, которая в первую очередь и обеспечивает быстрый рост функциональных возможностей ЭС. полупроводники. Платой за колоссально возросшие функциональные возможности стала повышенная уязвимость электроники к токовым перегрузкам. В результате, при действии по целям, в состав которых входят современные электронные средства, РЧЭМИ значительно превосходит по энергетической эффективности ударную волну и осколки. Например, стойкий функциональный отказ крылатой ракеты происходит при воздействии одного из поражающих факторов со следующими значениями плотности энергии (Дж/м2):
• осколки весом не менее одного грамма каждый — 100000;
• воздушная ударная волна— 50000;
• РЧЭМИ микросекундной длительности — 1-10.
Повышение степени интеграции, дальнейшая миниатюризация полупроводниковых элементов означают, что такие элементы будут становиться все менее стойкими к токовым перегрузкам. Так что РЧЭМИ — эффективный поражающий фактор, когда речь идет о целях, в состав которых функционально входит электроника: сама угроза его боевого применения встает на пути миниатюризации — основной тенденции развития электронных средств.
Есть у РЧЭМИ и недостатки: с хранением не только излучения, а и электромагнитной энергии других видов дело обстоит неблагополучно. Так, например, в заряженном высоковольтном конденсаторе максимальная плотность электрической энергии не превышает десятых долей джоуля на кубический сантиметр, и хранится она недолго; ваккумуляторе или в ионистере (конденсаторе сверхбольшой емкости) плотность энергии повыше, но ее нельзя извлечь быстро — за миллионные доли секунды. Так что энергию приходится «доставать» из других «хранилищ» и уж затем преобразовывать ее в электромагнитную; при этом не избежать существенных потерь, и потому итоговые эффективности электромагнитного и традиционного оружия отличаются не так разительно, как эффективности отдельно взятых поражающих факторов.
«Хорошие» хранилища энергии существуют: это те же взрывчатые вещества. Но если появление электроники привело к качественному скачку в боевых возможностях оружия, то скачка в характеристиках взрывчатых веществ не произошло: «на арену» вышел лишь октоген, превосходящий гексоген всего-то на несколько процентов по энергосодержанию. Дело в том, что, в соответствии со вторым началом термодинамики, любая реакция с выделением энергии самопроизвольно протекает всегда и ВВ не могут не разлагаться.
«Начало» ничего не сообщает о скорости такой реакции, но вариантов достаточно. Если вещества много, а начальный импульс существенен — возможна детонация или горение (взрывное или довольно вялое). Если возмущения нет — все зависит от условий хранения. Иногда признаки разложения могут не быть заметны в течение сотен лет; бывает, что увеличивается чувствительность к удару или трению, а иногда продукты разложения ускоряют распад и все заканчивается самовоспламенением и взрывом. Требование стабильности ограничивает плотность химической энергии и в современных ВВ она не превышает 10000 Дж/куб. см [75] . Может быть, и можно синтезировать более мощное вещество, но чувствительность и стойкость его будут такими, что к нему небезопасно станет приближаться.
75
Что, однако, на пять порядков больше плотности энергии в конденсаторе и позволяет развить при детонации мощность в многие тераватты.
…
76
Вспомним, что первой главе было написано про скорость детонации: она равна местной скорости звука в продуктах реакции. Понятно, что связки не должно быть слишком много — иначе детонация может и затухнуть.
Скорость детонации этого состава менее 8 км/сек, (октогена — более 9 км/сек), но создан такой эластит (рис. 4.6) не ради получения рекордных параметров взрыва, а для детонационной автоматики, где главное — максимальная стабильность характеристик. Этот состав и используется в детонационных разводках ядерных зарядов, описанных в главе 3, и именно использование таких разводок позволило уменьшить диаметр заряда более чем на порядок, в чем можно убедиться, сравнив снимки: «Толстяка», (рис 3.32) и артиллерийского снаряда (рис. 3.50).
Гарантированный срок службы ВВ — чуть более десятилетия, но фактически взрывчатые свойства сохраняются значительно дольше: даже снаряжение пролежавших более чем полвека в земле боеприпасов (рис. 4.7) демонстрирует образцовое дробление корпуса.