Шипение снарядов
Шрифт:
… Однажды журналистам — людям энциклопедических знаний — удалось заснять в многострадальном Бейруте, как улицу после взрыва засыпало обломками зданий. На такое, по их мнению, был способен лишь «вакуум», созданный бомбой, к которой соответствующая кликуха впоследствии прочно «приклеилась». Действительно, если ударную волну сзади не «поджимает» какого-либо вида поршень, то за сжатием следует разрежение. Иначе и быть не может, ведь, как указывал еще Михайло Васильич Ломоносов, «…все перемены в натуре случающиеся, такого суть состояния, что сколько чего у одного тела отнимается, столько присовокупится к другому…». Кадры киносъемки воздействия ударной волны ядерного взрыва подтверждают правоту Михайлы
82
Китайский товарищ, имя которого часто упоминается в русской разговорной речи.
В боеприпасах среднего калибра двухтактный принцип работы неэффективен, поскольку вес инициирующих облако зарядов не может быть существенно уменьшен — это приведет к затуханию детонации, а инициаторы «нормального» веса займут практически весь отведенный под снаряжение объем. Фугасное снаряжение в этом случае представляет смесь горючего (включающего и металлическую пудру) с конденсированным ВВ. Эту смесь инициирует обычный взрыватель и детонирует она, как слабая взрывчатка, но при разлете продукты взрыва смешиваются с воздухом, сразу загораются (рис. 4.26) и подпитывают своим горением тоже не слишком мощную ударную волну. Тротиловый эквивалент однотактных боеприпасов существенно меньше, чем двухтактных, но они воздействуют на цели еще и потоком тепла от горения, за что их именуют термобарическими.
Применить боеприпасы объемного взрыва было задумано в совершенно новой для них области: радиоэлектронной борьбе. Просители — специалисты по помехам — надеялись получить при «замагничивании» облака значительную эмиссию РЧЭМИ. Мнение у автора об этой идее восторженным не было, потому что существенное поле в облаке создать было нельзя: из ВМГ небольших размеров не «выжмешь» большого тока, так как нагрузка — проволочная петля диаметром в несколько дециметров — «непосильна» для него. Да и в качестве источника помех система «генератор-облако» вряд ли подходила, потому что время ее излучения (микросекунды) недостаточно для такого применения.
Опыты начались в подмосковном Красноармейске с первых недель 1983 года. Спешки не было, в неделю проводили один — два эксперимента. Излучение от «замагниченного» объемного взрыва измеряли рупорными антеннами, и результат был предсказуем: интегральная мощность порядка киловатт, время генерации — микросекунды. Организаторы сессии признавали, что этого недостаточно, но считали, что обоснование финансирования их работ такой результат обеспечит.
Перерывы в опытах дали возможность обдумать ситуацию. Плазма объемного взрыва выполняла роль конвертера (преобразователя) энергии. Магнитное поле «закручивало» [83] электроны этой плазмы, заставляя ее излучать по тому же механизму, что и комптоновские электроны — при генерации ЭМИ ЯВ. Расчеты показали, что число электронов (и проводимость) не имело смысла повышать: поглощение плазмой ею же эмитированного РЧЭМИ было и без того существенным, его «выпускал» лишь приповерхностный слой детонирующего облака. Рост же напряженности магнитного поля «уводил [84]
83
Хотя поле в этих опытах было значительно более сильным, чем магнитное поле Земли, оно не «закручивало» электроны полностью, а лишь искривляло траектории, пока длился их свободный пробег между столкновениями.
84
Чем «сильнее» поле, тем меньше радиусы траекторий «закручиваемых» частиц, а длины излучаемых волн близки к значениям этих радиусов.
Однако сам по себе ВМГ излучателем служить не может: магнитное поле, которое он генерирует при срабатывании — квазистационарно. Правда, ранее во ВНИИЭФ его все же пытались «заставить»: подключили взрывной трансформатор, а к нему — антенну. Но и на выходе трансформатора длительности получаемых импульсов были великоваты (около микросекунды), основная энергия реализовалась для волн длинами в сотни метров, что требовало примерно таких же по размерам антенн. Для имитации ЭМИ ЯВ такое циклопическое сооружение (рис. 3.59) сгодиться могло, но в качестве оружия — вряд ли.
Для того чтобы излучение было мощным, поле должно меняться не просто быстро, а так, чтобы характерное время его изменения соответствовало бы длине волны, сравнимой с размерами устройства. Если эти размеры оценить в дециметры, время, за которое должно существенно измениться поле (чтобы оценить его, надо поделить характерный размер на скорость электромагнитной волны), составляет наносекунды — на три порядка меньше, чем в ИВМГ! Безбожно завышая оценку скорости для любого, самого тончайшего лайнера (10 км/с) [85] , получим и минимальный радиус сжатия: десятки микрон ((104 {м\сек} x 10– 9 {сек} = 10– 5 {м}) — нереально малое значение, поскольку нестабильности «не допустят» такого.
85
Скорость расширения в вакууме ничем не «нагруженных» продуктов детонации конденсированного ВВ — 13 км/с.
Но ведь можно сжимать поле не лайнером, а токопроводящей ударной волной, такие процессы происходят во Вселенной и известны астрономам. Особенность ударного сжатия в том, что, начиная с некоторого предела, плотность энергии в ударной волне увеличивается только за счет температуры, а плотность вещества не растет.
Ясно, что чем плотнее «упаковано» атомами вещество, тем сильнее оно «сопротивляется» увеличению плотности при сжатии. Например, такая в высшей степени упорядоченная структура, как монокристалл, сжимается УВ с давлением в миллион атмосфер всего вдвое. Повышение же температуры в мощной ударной волне приводит к тому, что молекулы вещества за фронтом волны сначала диссоциируют, а потом — ионизуются и составлявшие их атомы: вещество, в исходном состоянии бывшее диэлектриком, может, будучи ударно-сжатым, превратиться в проводник [86] .
86
Скачок проводимости в некоторых ударно-сжатых веществах не связан с термической ионизацией.
… Вернемся к аналогии с карандашами и сделаем промежутки между ними совсем незаметными. Тогда стоит чуть-чуть тронуть их ряд — и фронт «процесса» окажется очень далеко, а «движение вещества» будет несущественным. Если сжимаемость мала, а ионизация все же происходит, то магнитное поле сразу оказывается в проводящем веществе, которое «не успеет» сколь-нибудь заметно вытеснить поле в область сжатия — произойдет «вмораживание» (рис. 4.27). Предельный случай вмораживания — ионизация вещества мощным излучением, когда среда может вообще не двигаться. Не сможет двигаться и поле, оказавшееся в такой среде после ионизации. Потери на вмораживание специфичны именно для ударного сжатия, они «откусывают» поле по краям области сжатия, «уводят» из него магнитный поток, в противоположность лайнеру, который «толкает перед собой» поле, сохраняя поток (за исключением того, что диффундирует внутрь него).
Подытожим причины, по которым применение ударной волны целесообразно для очень быстрого и очень «глубокого» сжатия магнитного поля.
• По обе стороны фронта ударной волны разница плотностей мала: даже ударные волны с давлением в миллион атмосфер сжимают твердые тела примерно вдвое, а дальнейшее повышение давления сопровождается ростом не плотности, а температуры. Малая разность плотностей означает, что при ударно-волновом сжатии не развиваются нестабильности.
• При ударно-волновом нагревании возможны ионизация и скачок проводимости: перед фронтом вещество является изолятором, в котором магнитное поле распространяется со световой скоростью, а за фронтом — проводником, в котором скорость распространения поля на много порядков ниже. Такой волной, образующей замкнутое кольцо, сходящееся к центру, может сжиматься магнитное поле — как лайнером, но без нестабильностей, и к тому же быстрее, чем лайнером, потому что скорость фронта всегда превышает массовую скорость.