Чтение онлайн

на главную - закладки

Жанры

Системное программное обеспечение. Лабораторный практикум

Молчанов Алексей Юрьевич

Шрифт:

Недостатком логарифмического поиска является требование упорядочивания таблицы идентификаторов. Так как массив информации, в котором выполняется поиск, должен быть упорядочен, время его заполнения уже будет зависеть от числа элементов в массиве. Таблица идентификаторов зачастую просматривается компилятором еще до того, как она заполнена, поэтому требуется, чтобы условие упорядоченности выполнялось на всех этапах обращения к ней. Следовательно, для построения такой таблицы можно пользоваться только алгоритмом прямого упорядоченного включения элементов.

Если пользоваться стандартными алгоритмами,

применяемыми для организации упорядоченных массивов данных, то среднее время, необходимое на помещение всех элементов в таблицу, можно оценить следующим образом:

Здесь k – некоторый коэффициент, отражающий соотношение между временами, затрачиваемыми компьютером на выполнение операции сравнения и операции переноса данных.

При организации логарифмического поиска в таблице идентификаторов обеспечивается существенное сокращение времени поиска нужного элемента за счет увеличения времени на помещение нового элемента в таблицу. Поскольку добавление новых элементов в таблицу идентификаторов происходит существенно реже, чем обращение к ним, этот метод следует признать более эффективным, чем метод организации неупорядоченной таблицы. Однако в реальных компиляторах этот метод непосредственно также не используется, поскольку существуют более эффективные методы.

Построение таблиц идентификаторов по методу бинарного дерева

Можно сократить время поиска искомого элемента в таблице идентификаторов, не увеличивая значительно время, необходимое на ее заполнение. Для этого надо отказаться от организации таблицы в виде непрерывного массива данных.

Существует метод построения таблиц, при котором таблица имеет форму бинарного дерева. Каждый узел дерева представляет собой элемент таблицы, причем корневым узлом становится первый элемент, встреченный компилятором при заполнении таблицы. Дерево называется бинарным, так как каждая вершина в нем может иметь не более двух ветвей. Для определенности будем называть две ветви «правая» и «левая».

Рассмотрим алгоритм заполнения бинарного дерева. Будем считать, что алгоритм работает с потоком входных данных, содержащим идентификаторы. Первый идентификатор, как уже было сказано, помещается в вершину дерева. Все дальнейшие идентификаторы попадают в дерево по следующему алгоритму:

1. Выбрать очередной идентификатор из входного потока данных. Если очередного идентификатора нет, то построение дерева закончено.

2. Сделать текущим узлом дерева корневую вершину.

3. Сравнить имя очередного идентификатора с именем идентификатора, содержащегося в текущем узле дерева.

4. Если имя очередного идентификатора меньше, то перейти к шагу 5, если равно – прекратить выполнение алгоритма (двух одинаковых идентификаторов быть не должно!), иначе – перейти к шагу 7.

5. Если у текущего узла существует левая вершина, то сделать ее текущим узлом и вернуться к шагу 3, иначе – перейти к шагу 6.

6. Создать новую вершину, поместить в нее информацию об очередном идентификаторе, сделать эту новую вершину левой вершиной текущего узла и вернуться к шагу 1.

7. Если у текущего узла существует правая вершина, то сделать ее текущим узлом и вернуться к шагу 3, иначе – перейти к шагу 8.

8. Создать новую вершину, поместить в нее информацию

об очередном идентификаторе, сделать эту новую вершину правой вершиной текущего узла и вернуться к шагу 1.

Рассмотрим в качестве примера последовательность идентификаторов Ga, D1, М22, Е, А12, ВС, F. На рис. 1.1 проиллюстрирован весь процесс построения бинарного дерева для этой последовательности идентификаторов.

Рис. 1.1. Заполнение бинарного дерева для последовательности идентификаторов.


Поиск элемента в дереве выполняется по алгоритму, схожему с алгоритмом заполнения дерева:

1. Сделать текущим узлом дерева корневую вершину.

2. Сравнить имя искомого идентификатора с именем идентификатора, содержащимся в текущем узле дерева.

3. Если имена совпадают, то искомый идентификатор найден, алгоритм завершается, иначе надо перейти к шагу 4.

4. Если имя очередного идентификатора меньше, то перейти к шагу 5, иначе – перейти к шагу 6.

5. Если у текущего узла существует левая вершина, то сделать ее текущим узлом и вернуться к шагу 2, иначе – искомый идентификатор не найден, алгоритм завершается.

6. Если у текущего узла существует правая вершина, то сделать ее текущим узлом и вернуться к шагу 2, иначе – искомый идентификатор не найден, алгоритм завершается.

Для данного метода число требуемых сравнений и форма получившегося дерева зависят от того порядка, в котором поступают идентификаторы. Например, если в рассмотренном выше примере вместо последовательности идентификаторов Ga, D1, М22, Е, А12, ВС, F взять последовательность А12, ВС, D1, Е, F, Ga, М22, то дерево выродится в упорядоченный однонаправленный связный список. Эта особенность является недостатком данного метода организации таблиц идентификаторов. Другими недостатками метода являются: необходимость хранить две дополнительные ссылки на левую и правую ветви в каждом элементе дерева и работа с динамическим выделением памяти при построении дерева.

Если предположить, что последовательность идентификаторов в исходной программе является статистически неупорядоченной (что в целом соответствует действительности), то можно считать, что построенное бинарное дерево будет невырожденным. Тогда среднее время на заполнение дерева (Тд) и на поиск элемента в нем (Тп) можно оценить следующим образом [3, 7]:

Несмотря на указанные недостатки, метод бинарного дерева является довольно удачным механизмом для организации таблиц идентификаторов. Он нашел свое применение в ряде компиляторов. Иногда компиляторы строят несколько различных деревьев для идентификаторов разных типов и разной длины [1, 2, 3, 7].

 

Хэш-функции и хэш-адресация

В реальных исходных программах количество идентификаторов столь велико, что даже логарифмическую зависимость времени поиска от их числа нельзя признать удовлетворительной. Необходимы более эффективные методы поиска информации в таблице идентификаторов. Лучших результатов можно достичь, если применить методы, связанные с использованием хэш-функций и хэш-адресации.

Хэш-функцией F называется некоторое отображение множества входных элементов R на множество целых неотрицательных чисел Z:

Поделиться:
Популярные книги

Адвокат Империи 3

Карелин Сергей Витальевич
3. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Адвокат Империи 3

Кротовский, может, хватит?

Парсиев Дмитрий
3. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
7.50
рейтинг книги
Кротовский, может, хватит?

Дурная жена неверного дракона

Ганова Алиса
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Дурная жена неверного дракона

Вонгозеро

Вагнер Яна
1. Вонгозеро
Детективы:
триллеры
9.19
рейтинг книги
Вонгозеро

Ведьма Вильхельма

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
8.67
рейтинг книги
Ведьма Вильхельма

Папина дочка

Рам Янка
4. Самбисты
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Папина дочка

Законы Рода. Том 6

Flow Ascold
6. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 6

Как я строил магическую империю 7

Зубов Константин
7. Как я строил магическую империю
Фантастика:
попаданцы
постапокалипсис
аниме
фантастика: прочее
5.00
рейтинг книги
Как я строил магическую империю 7

Лучший из худший 3

Дашко Дмитрий
3. Лучший из худших
Фантастика:
городское фэнтези
попаданцы
аниме
6.00
рейтинг книги
Лучший из худший 3

Штурмовик из будущего 3

Политов Дмитрий Валерьевич
3. Небо в огне
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Штурмовик из будущего 3

Последний попаданец 2

Зубов Константин
2. Последний попаданец
Фантастика:
юмористическая фантастика
попаданцы
рпг
7.50
рейтинг книги
Последний попаданец 2

Идеальный мир для Лекаря 14

Сапфир Олег
14. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 14

Безумный Макс. Поручик Империи

Ланцов Михаил Алексеевич
1. Безумный Макс
Фантастика:
героическая фантастика
альтернативная история
7.64
рейтинг книги
Безумный Макс. Поручик Империи

Вдова на выданье

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Вдова на выданье