Чтение онлайн

на главную - закладки

Жанры

Системное программное обеспечение. Лабораторный практикум

Молчанов Алексей Юрьевич

Шрифт:

Для организации таблицы идентификаторов по методу рехэширования необходимо определить все хэш-функции hi для всех i. Чаще всего функции hi определяют как некоторые модификации хэш-функции h. Например, самым простым методом вычисления функции hi(A) является ее организация в виде hi(A) = (h(A) + pi) mod Nm, где pi – некоторое вычисляемое целое число, а Nm – максимальное значение из области значений

хэш-функции h. В свою очередь, самым простым подходом здесь будет положить pi = i. Тогда получаем формулу hi(A) = (h(A) + i) mod Nm. В этом случае при совпадении значений хэш-функции для каких-либо элементов поиск свободной ячейки в таблице начинается последовательно от текущей позиции, заданной хэш-функцией h(A).

 

Этот способ нельзя признать особенно удачным: при совпадении хэш-адресов элементы в таблице начинают группироваться вокруг них, что увеличивает число необходимых сравнений при поиске и размещении. Но даже такой примитивный метод рехэширования является достаточно эффективным средством организации таблиц идентификаторов при неполном заполнении таблицы.

Среднее время на помещение одного элемента в таблицу и на поиск элемента в таблице можно снизить, если применить более совершенный метод рехэширования. Одним из таких методов является использование в качестве pi для функции hi(A) = (h(A) + pi) mod Nm последовательности псевдослучайных целых чисел p1, p2, …, pk. При хорошем выборе генератора псевдослучайных чисел длина последовательности k = Nm.

Существуют и другие методы организации функций рехэширования hi(A), основанные на квадратичных вычислениях или, например, на вычислении произведения по формуле: hi(A) = (h(A)Ni) mod N'm, где N'm – ближайшее простое число, меньшее Nm. В целом рехэширование позволяет добиться неплохих результатов для эффективного поиска элемента в таблице (лучших, чем бинарный поиск и бинарное дерево), но эффективность метода сильно зависит от заполненности таблицы идентификаторов и качества используемой хэш-функции – чем реже возникают коллизии, тем выше эффективность метода. Требование неполного заполнения таблицы ведет к неэффективному использованию объема доступной памяти.

Оценки времени размещения и поиска элемента в таблицах идентификаторов при использовании различных методов рехэширования можно найти в [1, 3, 7].

Хэш-адресация с использованием метода цепочек

Неполное заполнение таблицы идентификаторов при применении рехэширования ведет к неэффективному использованию всего объема памяти, доступного компилятору. Причем объем неиспользуемой памяти будет тем выше, чем больше информации хранится для каждого идентификатора. Этого недостатка можно избежать, если дополнить таблицу идентификаторов некоторой промежуточной хэш-таблицей.

В ячейках хэш-таблицы может храниться либо пустое значение, либо значение указателя на некоторую область памяти из основной таблицы идентификаторов. Тогда хэш-функция вычисляет адрес, по

которому происходит обращение сначала к хэш-таблице, а потом уже через нее по найденному адресу – к самой таблице идентификаторов. Если соответствующая ячейка таблицы идентификаторов пуста, то ячейка хэш-таблицы будет содержать пустое значение. Тогда вовсе не обязательно иметь в самой таблице идентификаторов ячейку для каждого возможного значения хэш-функции – таблицу можно сделать динамической, так чтобы ее объем рос по мере заполнения (первоначально таблица идентификаторов не содержит ни одной ячейки, а все ячейки хэш-таблицы имеют пустое значение).

Такой подход позволяет добиться двух положительных результатов: во-первых, нет необходимости заполнять пустыми значениями таблицу идентификаторов – это можно сделать только для хэш-таблицы; во-вторых, каждому идентификатору будет соответствовать строго одна ячейка в таблице идентификаторов. Пустые ячейки в таком случае будут только в хэш-таблице, и объем неиспользуемой памяти не будет зависеть от объема информации, хранимой для каждого идентификатора, – для каждого значения хэш-функции будет расходоваться только память, необходимая для хранения одного указателя на основную таблицу идентификаторов.

На основе этой схемы можно реализовать еще один способ организации таблиц идентификаторов с помощью хэш-функции, называемый методом цепочек. В этом случае в таблицу идентификаторов для каждого элемента добавляется еще одно поле, в котором может содержаться ссылка на любой элемент таблицы. Первоначально это поле всегда пустое (никуда не указывает). Также необходимо иметь одну специальную переменную, которая всегда указывает на первую свободную ячейку основной таблицы идентификаторов (первоначально она указывает на начало таблицы).

Метод цепочек работает по следующему алгоритму:

1. Во все ячейки хэш-таблицы поместить пустое значение, таблица идентификаторов пуста, переменная FreePtr (указатель первой свободной ячейки) указывает на начало таблицы идентификаторов.

2. Вычислить значение хэш-функции n для нового элемента A. Если ячейка хэш-таблицы по адресу n пустая, то поместить в нее значение переменной FreePtr и перейти к шагу 5; иначе перейти к шагу 3.

3. Выбрать из хэш-таблицы адрес ячейки таблицы идентификаторов m и перейти к шагу 4.

4. Для ячейки таблицы идентификаторов по адресу m проверить значение поля ссылки. Если оно пустое, то записать в него адрес из переменной FreePtr и перейти к шагу 5; иначе выбрать из поля ссылки новый адрес m и повторить шаг 4.

5. Добавить в таблицу идентификаторов новую ячейку, записать в нее информацию для элемента A (поле ссылки должно быть пустым), в переменную FreePtr поместить адрес за концом добавленной ячейки. Если больше нет идентификаторов, которые надо поместить в таблицу, то выполнение алгоритма закончено, иначе перейти к шагу 2.

Поиск элемента в таблице идентификаторов, организованной таким образом, будет выполняться по следующему алгоритму:

1. Вычислить значение хэш-функции n для искомого элемента A. Если ячейка хэш-таблицы по адресу n пустая, то элемент не найден и алгоритм завершен, иначе выбрать из хэш-таблицы адрес ячейки таблицы идентификаторов m.

2. Сравнить имя элемента в ячейке таблицы идентификаторов по адресу m с именем искомого элемента A. Если они совпадают, то искомый элемент найден и алгоритм завершен, иначе перейти к шагу 3.

Поделиться:
Популярные книги

Адвокат Империи 3

Карелин Сергей Витальевич
3. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Адвокат Империи 3

Кротовский, может, хватит?

Парсиев Дмитрий
3. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
7.50
рейтинг книги
Кротовский, может, хватит?

Дурная жена неверного дракона

Ганова Алиса
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Дурная жена неверного дракона

Вонгозеро

Вагнер Яна
1. Вонгозеро
Детективы:
триллеры
9.19
рейтинг книги
Вонгозеро

Ведьма Вильхельма

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
8.67
рейтинг книги
Ведьма Вильхельма

Папина дочка

Рам Янка
4. Самбисты
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Папина дочка

Законы Рода. Том 6

Flow Ascold
6. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 6

Как я строил магическую империю 7

Зубов Константин
7. Как я строил магическую империю
Фантастика:
попаданцы
постапокалипсис
аниме
фантастика: прочее
5.00
рейтинг книги
Как я строил магическую империю 7

Лучший из худший 3

Дашко Дмитрий
3. Лучший из худших
Фантастика:
городское фэнтези
попаданцы
аниме
6.00
рейтинг книги
Лучший из худший 3

Штурмовик из будущего 3

Политов Дмитрий Валерьевич
3. Небо в огне
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Штурмовик из будущего 3

Последний попаданец 2

Зубов Константин
2. Последний попаданец
Фантастика:
юмористическая фантастика
попаданцы
рпг
7.50
рейтинг книги
Последний попаданец 2

Идеальный мир для Лекаря 14

Сапфир Олег
14. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 14

Безумный Макс. Поручик Империи

Ланцов Михаил Алексеевич
1. Безумный Макс
Фантастика:
героическая фантастика
альтернативная история
7.64
рейтинг книги
Безумный Макс. Поручик Империи

Вдова на выданье

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Вдова на выданье