Чтение онлайн

на главную - закладки

Жанры

Структура реальности
Шрифт:

Но в этом случае не существует способа записать все, что произошло в процессе доказательства, потому что большая часть всего этого протекала в других вселенных, а измерение состояния вычисления изменило бы интерференционные свойства и тем самым нарушило бы корректность доказательства. Таким образом, создание старомодного объекта доказательства оказывается невозможным; более того, во Вселенной, как мы ее знаем, и близко нет такого количества материала, чтобы создать подобный объект, поскольку в этом доказательстве больше шагов, чем существует атомов в известной Вселенной. Этот пример показывает, что возможность квантовых вычислений делает эти два понятия доказательства не эквивалентными. Интуиция доказательства как объекта не охватывает все способы, с помощью которых можно доказать математическое утверждение в реальности.

И вновь мы видим неадекватность традиционного математического метода достижения уверенности попытками устранения из нашей интуиции всех возможных источников неопределенности и ошибок,

пока не останется одна только самоочевидная истина. Именно так поступал Гёдель. Именно так поступали Чёрч, Пост и особенно Тьюринг, когда пытались интуитивно постичь свои универсальные модели вычисления. Тьюринг надеялся, что его модель с абстрактной бумажной лентой настолько проста, настолько открыта и хорошо определена, что не зависит ни от каких допущений относительно физики, которые можно было бы в принципе опровергнуть, и, следовательно, она может стать фундаментом абстрактной теории вычислений, независимой от лежащей в ее основе физики. «Он считал, – как однажды сказал Фейнман, – что он понял бумагу». Но он ошибался. Реальная, квантово-механическая бумага очень сильно отличается от абстрактного материала, используемого машиной Тьюринга. Машина Тьюринга является всецело классической, она не принимает во внимание возможность того, что в различных вселенных на бумаге могут быть написаны различные символы, и что они могут интерферировать друг с другом. Безусловно, искать интерференцию между различными состояниями бумажной ленты непрактично. Но дело в том, что интуиция Тьюринга, из-за того, что в ней содержались ложные допущения из классической физики, заставила его абстрагироваться от некоторых вычислительных свойств его гипотетической машины – тех самых свойств, которые он намеревался сохранить. Именно поэтому результирующая модель вычисления оказалась неполной.

Различные ошибки, которые математики во все времена допускали в том, что касается доказательств и их надежности, вполне естественны. Настоящее обсуждение должно сформировать ожидание того, что современная точка зрения тоже не будет вечной. Но уверенность, с которой математики держались за эти недоразумения, а также их неспособность признать саму возможность ошибки во всем этом – следствие, на мой взгляд, древней и широко распространенной путаницы между методами математики и ее предметом. Сейчас я это поясню. В отличие от отношений между физическими сущностями, отношения между абстрактными сущностями не зависят от каких бы то ни было непредвиденных фактов и законов физики. Они полностью и объективно определяются автономными свойствами самих абстрактных сущностей. Математика, изучающая эти отношения и свойства, таким образом, изучает абсолютно необходимые истины. Другими словами, истины, изучаемые математикой, являются абсолютно надежными. Но это не значит, что наше знание этих необходимых истин само по себе является надежным и методы математики придают необходимую истинность своим выводам. Как-никак, математика изучает еще и ложные утверждения и парадоксы. И это не означает, что выводы из подобного изучения непременно являются ложными или парадоксальными.

Необходимая истина – это всего лишь предмет математики, а не награда, которую мы получаем за занятия математикой. Математическая уверенность не является и не может являться целью математики. Ее целью является даже не математическая истина, надежная или какая-нибудь еще. Ее целью является и должно являться математическое объяснение.

Почему же тогда математика работает так, как она работает? Почему она ведет к выводам, которые, несмотря на отсутствие надежности, можно принимать и без проблем применять в течение тысячелетий? Причина в том, что некоторая часть нашего знания физического мира столь же надежна и непротиворечива. А когда мы понимаем физический мир достаточно хорошо, мы также понимаем, какие физические объекты имеют общие свойства с абстрактными. Но, в принципе, надежность нашего знания математики остается зависимой от нашего знания физической реальности. Корректность каждого математического доказательства полностью зависит от того, правы ли мы относительно законов, управляющих поведением некоторых физических объектов, будь то генераторы виртуальной реальности, чернила и бумага или наш собственный мозг.

Таким образом, математическая интуиция – это вид физической интуиции. Физическая интуиция – это набор эмпирических правил (часть из которых, возможно, врожденные, а большинство – развившиеся в детстве) о том, как ведет себя физический мир. Например, у нас есть интуитивное представление о существовании физических объектов и того, что эти объекты обладают определенными свойствами: формой, цветом, массой и положением в пространстве, и некоторые из этих свойств существуют, даже когда за этими объектами не наблюдают. Другое такое представление заключается в том, что существует физическая переменная – время, – по отношению к которой свойства изменяются, но тем не менее объекты способны сохранять свою идентичность с течением времени. Еще одно заключается в том, что объекты взаимодействуют, и это взаимодействие может изменить некоторые их свойства. Математическая интуиция относится к тому способу, которым физический мир может демонстрировать свойства абстрактных сущностей.

Одним из таких интуитивных представлений является абстрактный закон или, по крайней мере, объяснение, лежащее в основе поведения объектов. Интуитивное представление о том, что пространство допускает замкнутые поверхности, отделяющие «внутреннюю часть» от «наружной части», можно уточнить, преобразовав ее в математическую интуицию множества, разделяющего все на члены и не-члены этого множества. Однако дальнейшее уточнение математиками (начиная с опровержения Расселом теории множеств Фреге) показало, что это представление перестает быть точным, когда рассматриваемое множество содержит «слишком много» членов (слишком большую степень бесконечности членов).

Даже если бы хоть какая-то физическая или математическая интуиция была врожденной, это не придавало бы ей какого-то особого авторитета. Врожденную интуицию невозможно считать суррогатом «воспоминаний» Платона о мире форм, поскольку общеизвестно, что многие интуитивные представления, которые случайно развились у людей в процессе эволюции, просто ложны. Например, человеческий глаз и управляющее им «программное обеспечение» неявным образом воплощают ложную теорию о том, что желтый свет состоит из смеси красного и зеленого света (в смысле, что желтый свет дает нам точно такое же ощущение, как и смесь красного и зеленого света). В реальности все три типа света имеют разные частоты и не могут быть созданы посредством смешивания света других частот. Тот факт, что смесь красного и зеленого света кажется нам желтым светом, не имеет ничего общего со свойствами света, но связан со свойствами наших глаз. Это результат компромисса, имевшего место на каком-то древнем этапе эволюции наших далеких предков. Конечно, возможно (хотя я в это не верю), что геометрия Евклида или логика Аристотеля каким-то образом встроены в структуру нашего мозга, как считал философ Иммануил Кант. Но из этого логически не следует их истинность. Даже если представить еще более невероятный случай, что у нас есть врожденные интуитивные представления, от которых мы не в состоянии избавиться, такая интуиция все равно не будет необходимой истиной.

Таким образом, ткань реальности имеет более однородную структуру, чем это могло бы быть, окажись математическое знание надежно верифицируемым, а, значит, иерархическим, как считалось традиционно. Математические сущности являются частью структуры реальности, поскольку они сложны и автономны. Создаваемая ими реальность некоторым образом похожа на царство абстракций, которое рисуют Платон и Пенроуз: будучи по определению неощутимыми, они объективно существуют и имеют свойства, независимые от законов физики. Однако именно физика позволяет нам приобрести знание об этом царстве. И она накладывает строгие ограничения. Если в физической реальности постижимо все, то постижимые математические истины составляют бесконечно малое меньшинство тех, которые в точности соответствуют каким-то физическим истинам – вроде того факта, что при определенных манипуляциях определенными символами, записанными чернилами на бумаге, появятся другие определенные символы. Иначе говоря, это и есть те истины, которые можно представить в виртуальной реальности. У нас нет другого выбора, кроме как принять то, что непостижимые математические сущности тоже реальны, так как они возникают неустранимым образом в наших объяснениях постижимых сущностей.

Существуют физические объекты, например, пальцы, компьютеры и мозг, поведение которых может моделировать поведение определенных абстрактных объектов. Тем самым структура физической реальности открывает нам окно в мир абстракций. Это очень узкое окно, оно предоставляет только ограниченный обзор. Некоторые из структур, которые мы видим из него, например, натуральные числа или правила вывода классической логики, кажутся важными или «фундаментальными» для абстрактного мира, так же как глубокие законы природы фундаментальны для физического мира. Но эта видимость может ввести в заблуждение, поскольку в действительности мы видим только то, что некоторые абстрактные структуры фундаментальны по отношению к нашему пониманию абстракций. У нас нет никакой причины считать, что эти структуры объективно важны в абстрактном мире. Просто некоторые абстрактные сущности ближе, чем другие, и их проще увидеть из нашего окна.

Терминология

Математика – изучение абсолютно необходимых истин.

Доказательство – способ установления истинности математических утверждений.

Традиционное определение: последовательность утверждений, которая начинается с некоторых посылок, заканчивается желаемым выводом и удовлетворяет определенным «правилам вывода».

Лучшее определение: вычисление, моделирующее свойства некоторой абстрактной сущности, результат которого устанавливает, что абстрактная сущность обладает данным свойством.

Математическая интуиция (традиционное определение) – высший самоочевидный источник обоснования математического рассуждения.

В реальности: множество теорий (осознанных и неосознанных) о поведении определенных физических объектов, которое моделирует поведение интересных абстрактных сущностей.

Интуиционизм – доктрина, состоящая в том, что все рассуждения об абстрактных сущностях ненадежны, кроме того случая, когда они основаны на прямой самоочевидной интуиции. Это математическая версия солипсизма.

Поделиться:
Популярные книги

Эволюционер из трущоб. Том 4

Панарин Антон
4. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб. Том 4

Вернуть невесту. Ловушка для попаданки

Ардова Алиса
1. Вернуть невесту
Любовные романы:
любовно-фантастические романы
8.49
рейтинг книги
Вернуть невесту. Ловушка для попаданки

Жена на четверых

Кожина Ксения
Любовные романы:
любовно-фантастические романы
эро литература
5.60
рейтинг книги
Жена на четверых

Законы рода

Flow Ascold
1. Граф Берестьев
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Законы рода

Убивать чтобы жить 5

Бор Жорж
5. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 5

Идеальный мир для Лекаря 16

Сапфир Олег
16. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 16

Сумеречный Стрелок 2

Карелин Сергей Витальевич
2. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 2

В погоне за женой, или Как укротить попаданку

Орлова Алёна
Фантастика:
фэнтези
6.62
рейтинг книги
В погоне за женой, или Как укротить попаданку

Переиграть войну! Пенталогия

Рыбаков Артем Олегович
Переиграть войну!
Фантастика:
героическая фантастика
альтернативная история
8.25
рейтинг книги
Переиграть войну! Пенталогия

Хозяйка усадьбы, или Графиня поневоле

Рамис Кира
Любовные романы:
любовно-фантастические романы
5.50
рейтинг книги
Хозяйка усадьбы, или Графиня поневоле

Гранд империи

Земляной Андрей Борисович
3. Страж
Фантастика:
фэнтези
попаданцы
альтернативная история
5.60
рейтинг книги
Гранд империи

Адвокат

Константинов Андрей Дмитриевич
1. Бандитский Петербург
Детективы:
боевики
8.00
рейтинг книги
Адвокат

Муассанитовая вдова

Катрин Селина
Федерация Объединённых Миров
Фантастика:
космическая фантастика
7.50
рейтинг книги
Муассанитовая вдова

Пустоцвет

Зика Натаэль
Любовные романы:
современные любовные романы
7.73
рейтинг книги
Пустоцвет