Структура реальности
Шрифт:
Тем временем математики продолжали строить свои абстрактные воздушные замки. Для практических целей многие такие построения казались достаточно надежными. Некоторые из них стали незаменимыми в науке и технике, и в большинстве своем они были связаны между собой красивой и плодотворной объяснительной структурой. Тем не менее никто не мог гарантировать, что вся эта структура или любая существенная ее часть не имеет в своей основе логического противоречия, способного превратить ее в полную бессмыслицу. В 1902 году Бертран Рассел доказал противоречивость схемы строгого определения теории множеств, которую только что предложил Готтлоб Фреге [46] . Это не значило, что больше нельзя было использовать множества в доказательствах. На самом деле совсем немногие математики всерьез считали, что хоть какой-то из обычных способов использования множеств, арифметики или других ключевых разделов математики может быть некорректным. В результатах Рассела поражало то, что математики считали свой предмет средством получения абсолютной уверенности par excellence через доказательство математических теорем. Сама возможность разногласий относительно обоснованности различных методов доказательства подрывала (как считалось) саму суть их предмета.
46
Фридрих
Поэтому многие математики почувствовали, что подведение под теорию доказательства, а тем самым и под саму математику, надежной основы является насущным делом, не терпящим отлагательства. После своих стремительных прорывов они хотели консолидации: раз и навсегда определить, какие виды доказательств являются абсолютно надежными, а какие – нет. Все оказавшееся вне зоны надежности можно было и отбросить, а все попадающее в эту зону стало бы единой основой всей будущей математики.
В этой связи нидерландский математик Лёйтзен Эгбертус Ян Брауэр [47] пропагандировал чрезвычайно консервативную стратегию теории доказательства, известную как интуиционизм, которая и по сей день имеет своих сторонников. Интуиционисты пытаются толковать «интуицию» самым узким возможным образом, сохраняя лишь то, что они считают ее неоспоримыми самоочевидными аспектами. Затем они поднимают определенную таким образом математическую интуицию на уровень даже более высокий, чем позволял ей Платон: они ставят ее даже выше чистой логики. Саму логику они считают не заслуживающей доверия, за исключением тех случаев, когда ее оправдывает прямая математическая интуиция. Например, интуиционисты отрицают, что можно иметь прямое интуитивное понимание какой-либо бесконечной сущности. Поэтому они отрицают существование любых бесконечных множеств, например, множества всех натуральных чисел. Утверждение о том, что «существует бесконечно много натуральных чисел», они сочли бы самоочевидно ложным, а утверждение о том, что «существует больше CGT-сред, чем физически возможных сред», – абсолютно бессмысленным.
47
Лёйтзен Эгбертус Ян Брауэр (1881–1966) – нидерландский математик и философ, основоположник интуиционизма. Работал в области топологии, теории множеств, теории меры и комплексного анализа. – Прим. ред.
Исторически интуиционизм сыграл ценную освободительную роль, как и индуктивизм до него. Он осмелился подвергнуть сомнению то, что считалось совершенно достоверным, и кое-что из этого действительно оказалось ложным. Но в качестве позитивной теории о том, что является или не является корректным математическим доказательством, он и не представляет никакой ценности. В действительности интуиционизм – это точное выражение солипсизма в математике. В обоих случаях наблюдается чрезмерная реакция на мысль о том, что мы не можем быть уверены в том, что нам известно о внешнем мире. В обоих случаях предложенное решение состоит в том, чтобы уйти во внутренний мир, который мы якобы знаем непосредственно и, следовательно (?), можем быть уверены, что познали истину. В обоих случаях решение включает отрицание существования – или, по крайней мере, отказ от объяснения – того, что находится вовне. И в обоих случаях этот отказ также делает невозможным объяснение большей части того, что находится внутри предпочитаемой области. Например, если действительно ложно то (как утверждают интуиционисты), что существует бесконечно много натуральных чисел, то мы можем заключить, что должно существовать лишь конечное их количество. Но сколько? И потом, сколько бы их ни было, почему нельзя создать интуицию следующего натурального числа после данного? Интуиционисты оправдываются, говоря, что приведенный мной довод допускает обоснованность обычной логики. В частности, он содержит логический переход: из того факта, что не существует бесконечно много натуральных чисел, делается вывод, что должно существовать какое-то конкретное конечное их количество. Применяемое в данном случае правило вывода называется законом исключенного третьего. Этот закон гласит, что для любого утверждения Х (например, «существует бесконечно много натуральных чисел») нет третьей возможности, кроме истинности Х и истинности отрицания Х («существует конечное множество натуральных чисел»), которая была бы истинной. Интуиционисты хладнокровно отрицают закон исключенного третьего.
Поскольку в разуме большинства людей сам закон исключенного третьего подкреплен мощной интуицией, его отрицание естественным образом вызывает у неинтуиционистов сомнение в том, так ли уж самоочевидна надежность интуиции интуиционистов. Или, если мы сочтем, что закон исключенного третьего исходит из логической интуиции, он приводит нас к пересмотру вопроса о том, действительно ли математическая интуиция стоит выше логики. И в любом случае, может ли это быть самоочевидным?
Но все это была критика интуиционизма извне. Это не опровержение: интуиционизм невозможно опровергнуть вообще. Если кто-либо настаивает, что непротиворечивость высказывания для него самоочевидна, то доказать его неправоту невозможно так же, как и если бы он настаивал на том, что существует только он один. Однако, как и в случае с солипсизмом в целом, воистину роковая ошибка интуиционизма открывается не тогда, когда на него нападают, а тогда, когда его принимают всерьез в качестве объяснения его собственного, произвольно усеченного мира. Интуиционисты верят в реальность конечного множества натуральных чисел 1, 2, 3… и даже числа 10 949 769 651 859. Но интуитивный аргумент, состоящий в том, что, раз у каждого из этих чисел есть следующее, то, они образуют бесконечную последовательность, для интуиционистов не более чем самообман и потому неубедителен. Но разрывая связь между своей версией абстрактных «натуральных чисел» и интуитивным представлением, которое эти числа должны были первоначально формализовать, интуиционисты отказывают себе в праве использовать обычную объяснительную структуру, через которую понимаются натуральные числа. Это создает проблему для каждого, кто предпочитает объяснения необъясненным усложнениям. Вместо того чтобы решить эту проблему, предоставив альтернативную или более глубокую объяснительную структуру для натуральных чисел, интуиционизм делает то же самое, что делала Инквизиция и что делали солипсисты: он еще дальше уходит от объяснений. Он вводит дальнейшие необъясненные усложнения (в данном случае – отрицание закона исключенного третьего), единственная цель которых состоит в том, чтобы позволить интуиционистам вести себя так, как если бы объяснения их противников были истинными, но не делая из этого никаких выводов относительно реальности.
Точно так же как солипсизм начинается со стремления упростить пугающе разнообразный и неопределенный мир, но при серьезном к нему отношении оказывается реализмом, дополненным
Давид Гильберт предложил план гораздо более соответствующий здравому смыслу – хотя, в конечном счете, и обреченный – «раз и навсегда убедиться в надежности математических методов». План Гильберта основывался на идее непротиворечивости. Он надеялся составить однажды и навсегда полный набор современных правил вывода математических доказательств с определенными свойствами. Количество таких правил должно было быть конечным. Они должны были быть применимы непосредственно, так, чтобы определение того, удовлетворяет ли им какое-то предполагаемое доказательство, не вызывало бы споров. Желательно, чтобы эти правила были интуитивно самоочевидными, но это не было первостепенным требованием для прагматичного Гильберта. Он был бы удовлетворен, если бы правила лишь умеренно соответствовали интуиции при условии, что он мог бы быть уверен в их непротиворечивости. То есть, если правила определили данное доказательство как корректное, он хотел быть уверен, что они никогда не определят как корректное любое доказательство с противоположным выводом. Но как он мог в этом убедиться? На этот раз непротиворечивость следовало доказать с помощью метода доказательства, который сам подчинялся тем же правилам вывода. Тем самым Гильберт надеялся восстановить полноту и надежность, присущую аристотелевскому подходу. Он также надеялся, что в соответствии с этими правилами будет в принципе доказуемо любое истинное математическое утверждение и не будет доказуемо никакое ложное утверждение. В 1900 году в ознаменование начала нового века Гильберт опубликовал список проблем, которые, как он надеялся, математики смогут решить в XX веке. Десятая проблема заключалась в нахождении набора правил вывода с вышеуказанными свойствами и доказательстве их непротиворечивости на их же основе.
Гильберту предстояло пережить полное разочарование. Тридцать один год спустя Курт Гёдель произвел революцию в теории доказательств радикальным отрицательным результатом, от которого до сих пор не оправились математический и физический мир: он доказал, что десятая проблема Гильберта не имеет решения. Во-первых, Гёдель доказал, что любой набор правил вывода, пригодный для корректного обоснования даже доказательств обычной арифметики, никогда не позволит обосновать доказательство своей собственной непротиворечивости. А значит, нечего и надеяться найти доказуемо непротиворечивый набор правил, о котором мечтал Гильберт. Во-вторых, Гёдель доказал, что если какой-то набор правил вывода в некоторой (достаточно обширной) области математики является непротиворечивым (неважно, доказуемо это или нет), то в пределах этой области должны существовать корректные методы доказательства, корректность которых нельзя установить, опираясь на данные правила. Это называется теоремой Гёделя о неполноте. Для доказательства своих теорем Гёдель пользовался замечательным расширением «диагонального аргумента» Кантора, о котором я упоминал в главе 6. Он начал с рассмотрения произвольного непротиворечивого набора правил вывода. Затем он показал, как составить утверждение, которое невозможно ни доказать, ни опровергнуть с помощью этих правил. Затем он доказал, что это высказывание является истинным.
Если бы программа Гильберта сработала, это стало бы плохой новостью для той концепции реальности, которую я выдвигаю в этой книге, поскольку устранило бы необходимость понимания при суждении о математических идеях. Кто угодно – или любой неразумный компьютер, – выучив правила вывода, на которые так надеялся Гильберт, смог бы судить о математических утверждениях, как и самый способный математик, не нуждаясь в математическом озарении или понимании и даже не имея самого отдаленного представления о смысле этих утверждений. Стало бы принципиально возможно делать новые математические открытия, не зная математики вообще, а зная только правила Гильберта. Можно было бы просто проверять все возможные строки букв и математических символов в алфавитном порядке, пока одна из них не прошла бы тест на то, является ли она доказательством или опровержением какого-либо знаменитого недоказанного предположения. В принципе, так можно было бы уладить любой спор в математике, даже не понимая его смысла – даже не зная значения символов, не говоря уж о понимании принципа действия доказательства или того, что оно доказывает, или в чем заключается метод доказательства, или почему на него можно положиться.
Может показаться, что достижение единого стандарта доказательств в математике могло бы, по крайней мере, помочь нам во всеобщем стремлении к объединению – то есть к «углублению» нашего знания, о котором я говорил в главе 1. Однако в действительности все наоборот. Подобно предсказательной «теории всего» в физике, правила Гильберта почти ничего не сказали бы нам о структуре реальности. Они реализовали бы в рамках математики заветную мечту редукционистов – предсказывать все (в принципе), но ничего не объяснять. Более того, если бы математика стала редукционистской, то все нежелательные черты, которые, как я показал в главе 1, отсутствуют в структуре человеческого знания, присутствовали бы в математике: математические идеи образовывали бы иерархию, в основе которой лежали бы правила Гильберта. Математические истины, проверка которых, исходя из этих правил, была бы очень сложна, оказались бы объективно менее фундаментальными, чем те, которые можно было бы немедленно проверить с помощью этих правил. Поскольку мог существовать только конечный набор таких фундаментальных истин, со временем математике пришлось бы заниматься все менее фундаментальными задачами. Математика вполне могла исчерпать себя, будь верна эта зловещая гипотеза. В противном случае она неизбежно распадается на все более загадочные специализации по мере увеличения сложности «эмерджентных» вопросов, которые вынуждены решать математики, и по мере того, как связи между этими вопросами и основаниями предмета становятся все более отдаленными.
Благодаря Гёделю мы знаем, что никогда не будет неизменного метода определения истинности математического утверждения, как не существует и неизменного способа определения истинности научной теории. Не будет никогда и неизменного способа создания нового математического знания. Следовательно, прогресс в математике всегда будет зависеть от творческого подхода. Изобретение новых типов доказательств всегда будет возможным и необходимым делом для математиков. Они будут проверять их с помощью новых аргументов и новых способов объяснения, зависящих от непрерывно растущего понимания используемых при этом абстрактных сущностей. Примером служат теоремы самого Гёделя: чтобы доказать их, ему пришлось изобрести новый метод доказательства. Я сказал, что этот метод был основан на «диагональном аргументе», однако Гёдель по-новому расширил это доказательство. До него так ничего не доказывали; никакие правила вывода, составленные кем-либо, кто никогда не видел метода Гёделя, не обладали бы, вероятно, такой предсказательной силой, чтобы определить его как корректный. Однако его корректность самоочевидна. Откуда исходит эта самоочевидность? Она возникает из понимания Гёделем природы доказательства. Доказательства Гёделя столь же убедительны, как и любые другие математические доказательства, но только для того, кто прежде поймет сопутствующее им объяснение.