Сварочные работы. Электродуговая. Газовая. Холодная. Термитная. Контактная сварка
Шрифт:
Распределение температуры в свариваемом металле зависит от мощности источника тепла, физических свойств металла, размеров конструкции, скорости перемещения и т. д. На рис. 2 показаны изотермы – овальные кривые, сгущающиеся впереди движущегося при сварке источника тепла (электрической дуги, пламени горелки). Изотерма 1600 °C – это температура плавления стали, она определяет ориентировочный размер сварочной ванны. Изотерма 1000 °C указывает на зону перегрева металла, изотерма 800 °C показывает зону закалочных явлений, а 500 °C – зону отпуска.
Рис. 2.
Затвердевание расплавленного металла, происходящее в хвостовой части ванны, называется кристаллизацией. Динамика этого процесса такова: сварочная дуга, направленная в головную часть ванны, повышает в этой области температуру, в результате чего происходит плавление основного и электродного металлов. Механическое давление, оказываемое дугой на жидкую фазу основного и дополнительного металлов, вызывает их перемешивание и перемещение в хвостовую часть ванны, вытесняя металл из основания ванны и открывая доступ к следующим слоям. По мере удаления металла от зоны плавления отвод тепла начинает преобладать над его притоком, и температура жидкой фазы снижается. Затвердевая, она образует сварной шов – общие для основного и электродного металла кристаллы, обеспечивающие монолитность сварочного соединения (рис. 3, а).
Рис. 3. Зоны сварного шва (а) и возможные дефекты в нем (б)
Снижение температуры в хвостовой части ванны происходит за счет усиленного теплоотвода в прилегающий холодный металл, так как его масса по сравнению с ванной значительно преобладает. Кристаллы металла начинают формироваться от готовых центров основного металла в направлении ведения сварки и принимают форму кристаллических столбов, вытянутых в сторону, противоположную теплоотводу.
Свойства сварного соединения определяются характером тепловых воздействий на металл в околошовных зонах. Участок основного металла, не подвергшийся расплавлению, структура и свойства которого изменились в результате нагрева при сварке или наплавке, называется зоной термического влияния. Здесь находятся участки старения (200–300 °C); отпуска (250–650 °C); неполной перекристаллизации (700–870 °C); нормализации (840—1000 °C); перегрева (1000–1250 °C); околошовный участок, примыкающий к линии сплавления (1250–1600 °C). Зона сплавления расположена вблизи границы оплавленной кромки свариваемой детали и шва и содержит образовавшиеся межатомные связи. В поперечном сечении сварного соединения она измеряется микрометрами, но роль ее в прочности металла очень велика.
В зоне термического влияния из-за быстрого нагрева и охлаждения металла происходят его структурные изменения. Следовательно, сварочный шов может получиться прочным и пластичным, но из-за термических воздействий на деталь качество сварки в целом будет низким (рис. 3, б).
Величина зоны термического влияния составляет при ручной электродуговой сварке для обычного электрода 2–2,5 мм, а для электродов с повышенной толщиной обмазки – 4—10 мм. При газовой сварке зона термического влияния существенно возрастает – до 20–25 мм.
Химический состав сварочного шва
Химический состав сварочного шва значительно отличается от основного металла, так как в этой области происходит перемешивание основного и электродного металлов, различных присадок, используемых при сварке, а также реакций взаимодействия жидкой фазы с атмосферными газами и защитными средствами. Соотношения отдельных компонентов, из которых состоит сварочный шов, зависят от способа наложения
В процессе сварки расплавленный металл активно вступает в реакцию с атмосферными газами, поглощая их и тем самым снижая механические качества сварочного шва. Так, при дуговой сварке дуга, контактирующая с металлом, состоит из смеси N2, O2, Н2, СО2, СО, паров Н2О, паров металла и шлака. В зоне плавления металла происходит процесс диссоциации – распад молекул на атомы. Под воздействием высоких температур молекулярный азот, водород и кислород распадаются и переходят в атомарное состояние, при котором активность газов значительно повышается.
Атомы кислорода активно растворяются в жидкой фазе металла, образуя оксиды, окисляя примеси и легирующие элементы, содержащиеся в металле. Из-за этого снижается предел прочности, предел текучести, ударная вязкость металла, ухудшается коррозионная стойкость и жаропрочность сталей. Кислород попадает в зону сварки из окружающего воздуха, из влаги, находящейся на свариваемых кромках и флюсах, с обмазки электродов. Кислород из расплавленного металла удаляют путем введения в сварочную ванну кремния и марганца, которые взаимодействуют с оксидом железа, образуя шлак. Шлак в процессе кристаллизации образует на поверхности шва твердую корку, которую удаляют механическим путем.
Растворение азота в жидкой фазе большинства металлов сопровождается образованием нитридов, что приводит к старению металла и повышению его хрупкости. Как и кислород, азот попадает в зону сварки из окружающего воздуха, и для недопущения образования нитридов сварочную ванну для легированных, жаропрочных сталей и большинства цветных металлов изолируют средой защитных газов.
Весьма нежелательным процессом является растворение водорода, что приводит к возникновению гидридов. Их образование в зоне термического влияния приводит к появлению пор, микро– и макротрещин. Водород попадает в зону сварки из атмосферного воздуха и при разложении влаги, которая имеется на свариваемых кромках, в обмазке электродов, защитных флюсах и т. д. Снижению содержания водорода способствует предварительное прокаливание электродов, свариваемых поверхностей и тщательная их зачистка.
Окись углерода в жидкой фазе металла практически не растворяется, но влияние этого соединения на качество сварочного шва огромно. В процессе кристаллизации металла окись углерода начинает выделять пузырьки, образуя поры в массиве сварочного шва.
Негативное влияние на состав сварочного шва оказывает сера, которая находится в основном и присадочном металлах, покрытиях, флюсах и т. д. Под действием высоких температур в сварочной ванне образуется сульфид железа (FeS), в процессе кристаллизации которого возникает эвтектика [7] (ее температура плавления ниже, чем у основного металла).
7
Эвтектика – тонкая смесь твердых веществ, одновременно выкристаллизовывающихся из расплава при температуре более низкой, чем температура плавления отдельных компонентов, а также жидкий расплав или раствор, из которого возможна такая кристаллизация.