Чтение онлайн

на главную - закладки

Жанры

Шрифт:

При ближайшем анализе метода истинный ход действия оказывается таков. Во-первых, степенные определения (само собою разумеется переменных величин), содержащиеся в уравнении, приводятся к их первым производным функциям. Тем самым изменяется значение членов уравнения; уравнения уже более не остается, но возникает лишь отношение между первою производною функциею одной переменной величины и такой же функциею другой; вместо рх=у2 получается р:2у, вместо 2ах — х2=у2 получается (а — х):у, что впоследствии и было обозначено, как отношение dx/dy. Это уравнение есть уравнение кривой, а это отношение, вполне зависимое от уравнения и выведенное из последнего (как указано выше, по простому правилу), есть, напротив, линейное, равное отношению между линиями; р:2у или (а — х):у суть сами отношения прямых линий кривой, координат и параметра; но тем самым знание еще не подвигается вперед. Интерес состоит в том, чтобы узнать и о других связанных с кривою линиях, что им свойственно это отношение, найти равенство двух отношений. Поэтому, во-вторых, является вопрос, какие прямые линии, определенные свойствами кривой, находятся в таком отношении. Но это есть то, что было узнано уже ранее, а именно, что такое этим путем полученное отношение есть отношение ординаты к подкасательной. Старые математики нашли это остроумным геометрическим способом; то, что было открыто новыми исследователями, есть эмпирический прием, состоящий в выводе такого уравнения прямой, из которого было бы видно то первое отношение, о коем уже известно, что оно равно отношению, содержащему линии, в данном случае, подкасательные,

подлежащие определению. Этот вывод уравнения понимался и исполнялся отчасти методически, путем дифференцирования, отчасти же были изобретены воображаемые приращения координат и воображаемый образованный из них и такого же приращения касательной характеристический треугольник, дабы пропорциональность отношения, найденного через понижение сте{195}пени уравнения, с отношением ординаты и подкасательной, оказалась полученною не эмпирически, как уже давно знакомая, но путем доказательства. Однако, старое знакомство проявляется вообще и, несомненно, в том, что вышеуказанная форма правила оказывается единственным поводом и относительным оправданием к принятию характеристического треугольника и упомянутой пропорциональности.

Лагранж отбросил эту симуляцию и вступил на истинно научный путь; его метод привел к правильному взгляду, так как этот метод состоит в том, чтобы разделить оба перехода, потребные для решения задачи, и каждый из них разработать и доказать для себя. Одна часть этого решения — остающаяся ближайшим образом при примере элементарной задачи нахождения подкасательной — теоретическая или общая часть, именно нахождение первой функции из данного уравнения кривой, регулируется сама для себя; она дает линейное отношение, т. е. отношение прямых линий, входящих в систему определения кривой. Другая часть решения есть нахождение тех связанных с кривою линий, которые состоят в таком отношении. Это достигается прямым путем (Th'eorie des fonct. anal. p. II chap. II), т. е. без характеристического треугольника, без того, чтобы прибегать к бесконечно малым дугам, ординатам и абсциссам и давать им определения dy и dx, т. е. членов этого отношения, и вместе с тем без того, чтобы непосредственно установлять их равенство с ординатою и подкасательною. Таково, говоря мимоходом, основное положение аналитической геометрии, которое исходит от координат или, чт'o то же самое, механики — от параллелограмма сил, и именно потому не испытывает потребности задавать себе труд доказательства. Подкасательная полагается стороною треугольника, другие стороны которого суть ордината и соответствующая ей касательная. Последняя, как прямая линия, имеет своим уравнением р=aq (прибавление +b бесполезно для определения и обусловливается лишь любовью к обобщению); определение отношения p/q есть а, коэффициент q, который есть относительно первая функция уравнения, вообще же должно быть рассматриваемо, лишь как а=p/q, т. е., как сказано, как существенное определение прямой линии, составляющей касательную к кривой. Поскольку затем берется первая функция уравнения кривой, она (функция) есть также определение некоторой прямой линии; поскольку далее одна координата р первой прямой линии и у, ордината кривой, отожествляются, т. е. точка, в которой она, принимаемая за касательную, прикасается к кривой, есть равным образом исходная точка прямой, определяемой первою функциею кривой, то вопрос сводится к доказательству, что эта вторая прямая линия совпадает с первою, т. е. есть касательная; или выражаясь алгебраически, что если y=fx, a p=Fq и если у=р, т. е. fx=Fx, то f'x=F'q. A что принимаемая за касательную прямая и та прямая, которая определяется из уравнения его первою функциею, совпадают, что вторая прямая есть также {196}касательная, — это показывается при помощи приращения i абсциссы и определяемого через развитие функции приращения ординаты. Здесь, следовательно, опять-таки выступает пресловутое приращение; но так как оно вводится для только что объясненной надобности, то и развитие функции при его помощи должно, конечно, считаться чем-то другим сравнительно с ранее упомянутым употреблением приращения для нахождения дифференциального уравнения и для характеристического треугольника. Допускаемое здесь употребление правомерно и необходимо; оно входит в круг геометрии, так как оно служит для геометрического определения касательной, как таковой, которое не может между касательною и кривою, с коею первая имеет общую точку, найти никакой прямой линии, также проходящей через эту точку. Ибо этим определением качество касательной и не-касательной сводится к различению величины, и касательною оказывается та линия, на которую с точки зрения лишь определения приходится наименьшая величина (die gr"ossere Kleinheit). Эта по-видимому лишь относительно наименьшая величина не содержит в себе ничего эмпирического, т. е. зависящего от определенного количества, как такового, она положена качественно самым свойством формулы, если только различие момента, от которого зависит сравниваемая величина, есть различие степени; если последняя объемлет i и i2, и если i, долженствующее в конце концов означать число, изображается дробью, то i2 в себе и для себя менее, чем i, так что даже представление любой величины, которую можно приписать i, здесь излишне и даже неуместно. Поэтому и доказательство наименьшей величины не имеет ничего общего с бесконечно малым, которое тем самым здесь совершенно не выступает, Просто ради его красоты и ради ныне забываемой, но вполне заслуженной славы, я хочу здесь сказать о декартовом методе касательных; он имеет впрочем отношение к природе уравнений, о которых нужно сделать еще дальнейшее замечание. Декарт излагает этот самостоятельный метод, в котором искомое линейное определение также находится путем той же производной функции, в своей и в других отношениях оказавшейся столь плодотворною геометрии (liv. II. 357 и сл. Oeuvres compl. ed. Cousin t. V), в которой он научил великим основоположениям касательно природы уравнений и их геометрического построения, а с тем вместе и приложению анализа к геометрии. Проблема имеет у него форму задачи — провести прямые линии перпендикулярно к любому месту кривой, чем определяются подкасательные и т. п.; понятно то удовлетворение, которое он выражает по поводу своего открытия, касавшегося предмета господствовавшего в то время общего научного интереса, открытия, которое столь геометрично и тем самым столь возвышается над вышеупомянутыми методами простых правил его соперников: «я осмеливаюсь сказать, что эта самая полезная и самая общая из геометрических задач, не только из тех, которые я знаю, но даже из тех, которые я когда-либо желал знать в геометрии». Он основывает решение ее на аналитических уравнениях прямоугольного треугольника, образуемого ординатою точки кривой, в которой должна быть {197}перпендикулярно проведена требуемая прямая линия, затем самою этою линиею, нормальною, и, в третьих, частью оси, отрезаемой ординатою и нормальною, поднормальною. Из известного уравнения кривой подставляется за сим в уравнение треугольника значение или ординаты или абсциссы так, что получается уравнение второй степени (причем Декарт показывает, как к тому же можно свести и кривые, уравнения коих содержат высшие степени), в котором дана лишь одна из переменных величин и притом в квадрате и в первой степени; квадратное уравнение, которое прежде всего является так называемым нечистым. За сим Декарт рассуждает, что если представить себе одну точку кривой точкою пересечения ее с кругом, то этот круг должен пересечь кривую еще в одной точке, и тем самым должны получиться для двух происходящих таким образом и неравных х два уравнения с теми же постоянными величинами и одинаковой формы, — или же лишь одно уравнение с разными значениями х. Но уравнения могут быть сделаны одним для одного треугольника, в котором гипотенуза есть перпендикулярная к кривой, нормальная, что представляется так, что обе точки пересечения становятся совпадающими, если круг становится касающимся к кривой. Но при этом устраняется и неравенство корня х или у квадратного уравнения. В квадратном же уравнении с двумя равными корнями коэффициент члена, содержащего неизвестное в первой степени, вдвое более одного корня, что дает уравнение, посредством которого находятся искомые определения. Этот способ должен считаться гениальным приемом истинно аналитической головы, которому далеко уступает совершенно ассерторически принимаемая пропорциональность подкасательной и ординаты долженствующим быть бесконечно малыми так называемым приращениям абсциссы и ординаты.

Найденное таким путем конечное уравнение, в котором коэффициент второго члена квадратного уравнения равен удвоенному корню или неизвестному, тожественно уравнению, находимому посредством дифференциального исчисления. Дифференцирование х2ах — b=0 дает новое уравнение 2х — а=0; а дифференцирование х3рх — q=0 дает 3x2р=0. Но здесь должно заметить, что правильность таких производных уравнений отнюдь не самоочевидна. Из уравнения с двумя переменными величинами, которые оттого, что они переменны, еще не перестают быть неизвестными, возникает, как указано выше, лишь отношение, по тому приведенному выше простому основанию, что через подстановление функций возвышения в степень вместо самих степеней изменяется значение обоих членов уравнения, и остается еще неизвестным, сохраняется ли между ними уравнение при таком изменении значения. Уравнение dy/dx=Р выражает собою только то, что Р есть отношение, а затем dy/dx не приписывается никакого реального смысла. Об этом отношении =Р также еще неизвестно, какому другому отношению оно равно; оно получает значение лишь через уравнение пропорциональности. Так {198}как было указано выше, что это значение, именуемое приложением, берется извне, эмпирически, то о сказанных выведенных путем дифференцирования уравнениях должно быть также известно извне, имеют ли они равные корни для того, чтобы знать, правильно ли полученное уравнение. Но на это обстоятельство

в учебниках определительно не указывают; оно устраняется тем, что, приравнивая нулю уравнение первой степени, сейчас же получают =у, откуда затем при дифференцировании все же получается dy/dx, т. е. лишь отношение. Исчисление функций, конечно, должно во всяком случае иметь дело с функциями возвышения в степень, а дифференциальное исчисление — с дифференциалами, но отсюда еще не следует для себя, что если берутся дифференциалы или функции возвышения в степень каких-либо величин, то эти величины должны быть только функциями других величин. И кроме того, в теоретической части при выводе дифференциалов, т. е. функций возвышения в степень, еще вовсе не думают о том, что величины, с которыми приходится иметь дело после такого вывода, сами должны быть функциями других величин.

Еще можно заметить относительно опущения постоянных величин при дифференцировании, что оно имеет здесь тот смысл, что постоянная величина при равенстве корней безразлична для их определения, так как это определение исчерпывается коэффициентами второго члена уравнения. Так, в приведенном примере Декарта постоянная величина есть квадрат самого корня, следовательно, то последний может быть определен как из нее, так и из коэффициентов, поскольку она, как и коэффициенты, есть функция корней уравнения. В обычном изложении устранение связанной с прочими членами посредством знаков + и — постоянной величины достигается простым механизмом приема, состоящего в том, что для нахождения дифференциала сложного выражения дается приращение лишь переменным величинам, и полученное таким образом выражение вычитается из первоначального. О значении постоянных величин и их опущения, поскольку они сами суть функции и являются нужными или ненужными по этому определению, не поднимается и речи.

С опущением постоянных величин связано такое же замечание по поводу названий дифференцирования и интегрирования, какое ранее было сделано по поводу выражений конечного и бесконечного, а именно что в их определении заключается скорее противоположность того, что выражается этими словами. Дифференцирование означает положение разностей; но через дифференцирование, напротив, уравнение приводится к меньшему объему, опущением постоянной величины устраняется один из моментов определенности; как было указано, корни переменных величин приравниваются, следовательно разность их снимается. При интегрировании же постоянная величина снова должна быть прибавлена; уравнение тем самым интегрируется, но в том смысле, что ранее снятая разность корней снова восстановляется, т. е. что положенное равным дифференцируется. Обычный способ {199}выражения приводит к тому, что существенная сторона дела остается в тени, и все сводится к подчиненной точке зрения, чуждой этой стороне дела, точке зрения отчасти бесконечно малой разности, приращения и т. п., отчасти просто различия между данною и производною функциею, без принятия во внимание специфического, т. е. качественного различения.

Другая главная область, к которой применяется дифференциальное исчисление, есть механика; о значении различных степенных функций, которые получаются из элементарных уравнений ее предмета, движения, было уже попутно упомянуто; я прямо принимаю их здесь. Уравнение, т. е. математическое выражение ложно равномерного движения с=s/t или s=ct, в котором пройденные пространства относятся к протекшим временам, как эмпирическая единица с, означающая величину скорости, не дает никакого повода к дифференцированию; коэффициент с уже вполне определен и известен, и относительно него не может иметь места никакое дальнейшее степенное развитие. Как анализируется s=at2, уравнение падения тел, было уже указано; первый член анализа ds/dt=2at понимается и словесно и реально так, что он должен быть членом суммы (каковое представление мы уже устранили), одною частью движения, которому должна быть присуща сила инерции, т. е. ложно равномерной скорости, таким образом, что в бесконечно малые промежутки времени движение совершается равномерно, а в конечные промежутки времени, т. е. в действительности, неравномерно. Конечно f's=2at; значение а и t известно, равно как тем самым положено определение скорости равномерного движения; так как а=s/t2, то вообще 2at=2s/t; но тем самым мы ни мало не приобретаем дальнейшего знания; лишь ложное предположение, что 2at есть часть движения, как суммы, дает здесь ложную видимость физического предложения. Самый множитель а, эмпирическая единица — определенное количество, как таковое — приписывается тяготению; но если пускается в ход категория силы тяготения, то следовало бы скорее сказать, что именно целое s=at2 есть действие или, правильнее, закон тяготения. Тому же соответствует и выведенное из ds/dt=2at предложение, что если бы прекратилось действие тяготения, то тело со скоростью, приобретенною в конце своего падения, прошло бы пространство вдвое большее пройденного во время, равное времени его падения. Здесь мы встречаем и саму для себя превратную метафизику; конец падения или конец части времени, в которое падает тело, есть всегда сам еще часть времени; если бы он не был такою частью, то наступил бы покой и следовательно — отсутствие скорости; скорость может быть измеряема лишь по пространству, пройденному в некоторую часть времени, а не в конце ее. Если же, наконец, и в других отраслях физики, которые вовсе не имеют дела с движением, например относительно света (за исключением того, {200}что называется его распространением в пространстве) и количественных определений цветов, прибегают к приложению дифференциального исчисления, и первая производная функция квадратной функции именуется и здесь скоростью, то на это следует смотреть как на еще более неуместный формализм вымышляемого существования.

Движение, изображаемое уравнением s=at2, мы находим, говорит Лагранж, на опыте в падении тел; простейшее следующее движение должно бы было иметь уравнение s=ct3, но в природе такого движения не оказывается; мы не знаем, что мог бы означать коэффициент с. Как бы то ни было, есть однако движение, уравнение которого есть s3=at2 — кеплеров закон движения тел солнечной системы; вопрос о том, что должна означать здесь первая производная функция 2at/3s2, и дальнейшее прямое исследование этого уравнения через дифференцирование, нахождение законов и определений этого абсолютного движения с той исходной точки зрения должно бы конечно явиться интересною задачею, в решении которой анализ проявил бы себя в достойном блеске.

Таким образом для себя приложение дифференциального исчисления к элементарным уравнениям движения не представляет никакого реального интереса; формальный же интерес обусловливается общим механизмом исчисления а. Но иное значение получает разложение движения в отношении определения его траектории; если последняя есть кривая, и ее уравнение содержит высшие степени, то требуется переход от прямолинейных функций возвышения в степень к самим степеням, и поскольку первые должны быть выведены из первоначального уравнения движения, содержащего фактор времени, с устранением времени, то этот фактор должен быть ограничен теми низшими функциями, из коих могут быть получены эти уравнения линейных определений. Эта сторона затрагивает интерес другой части дифференциального исчисления.

Предыдущее изложение имело целью выяснить и установить простое специфическое определение дифференциального исчисления и привести тому некоторые элементарные примеры. Это определение оказалось состоящим в том, что для уравнения степенной функции находится коэффициент, так наз. первая (производная) функция, и что то отношение, которое она собою представляет, обнаруживается в моментах конкретного предмета, причем полученным таким образом равенством между обоими отношениями определяются сами эти моменты. Равным образом надлежит по поводу принципа интегрального исчисления вкратце рассмотреть, что получается для его специфического конкретного определения из его приложения. Взгляд на это исчисление упрощается и исправляется уже тем, что оно не признается более методом суммирования, как оно было названо в противоположность дифференцированию, существенным ингредиентом которого считается приращение, чем оно вводилось в существенную связь с формою ряда. Задача интегрального исчисления прежде всего столь же теоретическая или скорее {201}формальная, как и дифференциального исчисления, но при этом обратная последнему; в первом случае исходят от функции, которая рассматривается, как производная, как коэффициент первого возникающего через развитие еще неизвестного уравнения члена, и через нее должна быть найдена первоначальная степенная функция; та функция, которая в естественном порядке развития рассматривается как первоначальная, здесь имеет характер производный, а та, которая ранее считалась производною, есть здесь данная или вообще первоначальная. Формальная сторона этого действия является уже предрешенною дифференциальным исчислением, так как последнее вообще установляет переход и отношение первоначальной функции к возникающей путем ее развития. Если при этом отчасти для того, чтобы подставить ту функцию, от которой должно исходить, отчасти для осуществления перехода ее к первоначальной функции во многих случаях оказывается необходимым прибегнуть к форме ряда, то нужно прежде всего твердо помнить, что эта форма, как таковая, не имеет никакой непосредственной связи с собственным принципом интегрирования.

Но другою стороною задачи этого исчисления является с точки зрения формального действия его приложение. Последнее и является само задачею узнать — в вышеуказанном смысле — то значение, которое свойственно первоначальной функции, рассматриваемой с точки зрения данной функции, принимаемой за первую (производную) и относимой к особому предмету. Само по себе это учение могло бы, по-видимому, войти вполне в состав дифференциального исчисления; но есть дальнейшее обстоятельство, вследствие которого дело оказывается не так просто. Именно поскольку в этом исчислении оказывается, что в производной функции уравнения кривой получается линейное отношение, то тем самым признается, что интегрирование этого отношения дает уравнение кривой в отношении абсциссы и ординаты; или если дано уравнение кривой поверхности, то дифференцирование уже научает значению производной функции такого уравнения, именно что в этой функции ордината представляет функцию абсциссы, стало быть, уравнение кривой линии.

Поделиться:
Популярные книги

Сын Тишайшего

Яманов Александр
1. Царь Федя
Фантастика:
попаданцы
альтернативная история
фэнтези
5.20
рейтинг книги
Сын Тишайшего

"Искажающие реальность" Компиляция. Книги 1-14

Атаманов Михаил Александрович
Искажающие реальность
Фантастика:
боевая фантастика
космическая фантастика
киберпанк
рпг
5.00
рейтинг книги
Искажающие реальность Компиляция. Книги 1-14

Школа. Первый пояс

Игнатов Михаил Павлович
2. Путь
Фантастика:
фэнтези
7.67
рейтинг книги
Школа. Первый пояс

Невеста на откуп

Белецкая Наталья
2. Невеста на откуп
Фантастика:
фэнтези
5.83
рейтинг книги
Невеста на откуп

Убивать чтобы жить 2

Бор Жорж
2. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 2

Вперед в прошлое!

Ратманов Денис
1. Вперед в прошлое
Фантастика:
попаданцы
5.00
рейтинг книги
Вперед в прошлое!

Аргумент барона Бронина 4

Ковальчук Олег Валентинович
4. Аргумент барона Бронина
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Аргумент барона Бронина 4

Измена. (Не)любимая жена олигарха

Лаванда Марго
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. (Не)любимая жена олигарха

Измена. Право на обман

Арская Арина
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на обман

Бастард Императора. Том 7

Орлов Андрей Юрьевич
7. Бастард Императора
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард Императора. Том 7

Жаба с кошельком

Донцова Дарья
19. Любительница частного сыска Даша Васильева
Детективы:
иронические детективы
8.26
рейтинг книги
Жаба с кошельком

Бастард Императора. Том 11

Орлов Андрей Юрьевич
11. Бастард Императора
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард Императора. Том 11

Академия чаросвет. Тень

Ярошинская Ольга
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Академия чаросвет. Тень

Наследие Маозари 4

Панежин Евгений
4. Наследие Маозари
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Наследие Маозари 4