Учение о бытии
Шрифт:
С формою ряда дифференциальное и интегральное исчисление вообще имеет ближайший общий интерес определения тех развиваемых функций, которые в рядах именуются коэффициентами членов; но между тем как интерес этого исчисления простирается лишь на отношение первоначальной функции к ближайшему коэффициенту ряда, ряд стремится найти сумму множества членов, расположенного по порядку степеней, с коим связаны эти коэффициенты. Бесконечное, присущее бесконечному ряду, неопределенное выражение отрицания определенного количества вообще, не имеет ничего общего с утвердительным определением, присущим бесконечному этого исчисления. Равным образом бесконечно малое, как приращение, посредством которого развитие принимает форму ряда, есть лишь внешнее средство этого развитие, и его так называемой бесконечности принадлежит лишь значение не иметь никакого значения, кроме значения такого средства; ряд, поскольку он в действительности не есть то, что от него требуется, приводит к некоторой прибавке, вновь отбросить которую есть излишний труд. Этим затруднением обременен и метод Лагранжа, который вновь прибег по преиму{206}ществу к форме ряда; хотя именно в этом методе чрез то, что наименовано приложением, проявляется истинное своеобразие, так как вместо того, чтобы втеснять формы dx, dy и т. д. в самые предметы, им указываются прямо те части, коим в них самих свойственна определенность производных функций (функций развития), и тем самым оказывается, что форма ряда не есть здесь то, о чем идет дело [28] .
28
В вышеупомянутой критике (Jahrbuch f"ur wis. Krit. B. II. 1827. № 155, 6 и сл.) находятся интересные заявления основательного специалиста Г.
Примечание 3-е
Еще другие формы, связанные с качественною определенностью величины
Бесконечно малое дифференциального исчисления есть в своем утвердительном смысле качественная определенность величины, о которой будет далее сказано, что она в этом исчислении рассматривается не только вообще, но на особенном отношении степенной функции к функции ее развития. Но эта качественная определенность является еще в дальнейшей, так сказ., слабейшей форме, и последняя, равно как связанное с нею употребление бесконечно малых и их смысл при таком употреблении, должны быть рассмотрены в настоящем примечании.
Исходя из вышеизложенного, мы должны в этом отношении припомнить, что различаемые степенные определения с аналитической стороны проявляются прежде всего, как формальные и совершенно однородные, что они означают числовые величины, не имеющие, как таковые, качественного различия одна от другой. Но в приложении к пространственным предметам аналитическое отношение обнаруживается вполне в своей качественной определенности, как переход от линейных к плоскостным {207}определениям, от прямолинейных к криволинейным и т. д. Далее это приложение приводит к тому, что пространственные предметы, данные по их природе в форме непрерывных величин, понимаются дискретно, — плоскость, как множество линий, линия, как множество точек и т. д. Единственный интерес такого разложения состоит в определении самых точек, на которые разлагается линия, линий, на которые разлагается плоскость и т. д., дабы от такого определения подвигаться далее аналитически, т. е. собственно арифметически; эти исходные пункты суть элементы искомых определений величины, из которых (элементов) должны быть выведены функция и уравнение для конкретного, для непрерывной величины. Для решения задач, в коих по преимуществу обнаруживается интерес к употреблению этого приема, требуется в качестве исходного элемента нечто определенное для себя самого в противоположность непрямому ходу решения, поскольку последний может начинать лишь с пределов, между которыми лежит то определенное для себя, которое служит ему целью. Результаты обоих методов совпадают, если только может быть найден закон дальнейшего процесса определения при отсутствии возможности достигнуть полного, т. е. т. наз. конечного определения. Кеплеру приписывается честь впервые придти к мысли такого обратного приема и принятие дискретного за исходный пункт. Объяснение того, как он понимает первое предложение архимедова измерения круга, выражает это очень просто. Первое предложение Архимеда состоит, как известно, в том, что круг равен прямоугольному треугольнику, один катет которого есть радиус, а другой равен длине окружности. Находя смысл этого предложения в том, что окружность круга содержит столько же частей, как точек, т. е. бесконечно много, из коих каждая может считаться основанием равнобедренного треугольника и т. д., Кеплер выражает тем самым разложение непрерывного в форму дискретного. Встречающееся здесь выражение бесконечное еще очень далеко от того определения, какое дается ему в дифференциальном исчислении. Если для таких дискретных частей найдена определенность, функция, то они должны быть далее соединены, служить элементами непрерывного. Но так как никакая сумма точек не образует линию, никакая сумма линий не образует плоскости, то точки уже изначала принимаются за линейные, а линии — за плоскостные. Умножение линий на линии представляется сначала чем-то бессмысленным, т. к. умножение вообще производится над числами, т. е. есть такое их изменение, при котором то, во что они переходят, совершенно однородно с произведением, есть изменение только величины. Напротив, то, что называется умножением линии, как таковой, на линию — т. е. ductus liniae in liniam или plani in planum, которое есть также ductus puncti in lineam — есть изменение не только величины, но последней, как качественного определения пространства, как измерения; переход линии в плоскость должен быть понимаем, как выход из себя, поскольку выход из себя точки есть линия, плоскости — полное пространство. То же самое получается, когда пред{208}ставляют себе, что движение точки образует линию и т. д.; но движение подразумевает определение времени и потому является в этом представлении лишь более случайным, внешним изменением состояния; между тем под выходом из себя должно понимать определенность понятия, качественное изменение — выражаясь арифметически, умножение — единицы (как точки и т. п.) в определенное число (линию и т. п.). При этом следует еще заметить, что при выходе из себя площади, который является как бы умножением площади на площадь, оказывается, по-видимому, различие между арифметическим и геометрическим произведением, так как выход из себя площади, как ductus plani in planum, арифметически дает умножение второго измерения на второе, т. е. произведение четырех измерений, геометрически понижаемое, однако, до трех. Насколько число с одной стороны, так как оно имеет своим принципом единицу, дает прочное определение внешнему количественному, настолько же произведение его формально; как числовое определение, 3*3, умноженное само на себя, есть 3*3*3*3; но та же величина, умноженная на себя, как определение площади, удерживается на 3*3*3, так как пространство, представляемое, как выход за себя точки, отвлеченного предела, имеет свой истинный предел, как конкретную определенность линии, в третьем измерении. Это различие могло бы оказаться действительным в свободном движении, в котором одна, пространственная сторона определяется геометрически, а другая, временная, арифметически (в кеплеровом законе s3:t2).
В чем состоит различие рассматриваемого здесь качественного от предмета предыдущего примечания, ясно само собою и без дальнейшего объяснения. В последнем качественное заключалось в степенной определенности; здесь же оно, как бесконечно малое, есть лишь множитель относительно произведения, точка относительно линии, линия относительно плоскости и т. д. Качественный же переход от дискретного, на которое представляется разложенным непрерывное, к непрерывному, осуществляется, как суммирование.
Но что кажущееся простое суммирование в действительности содержит в себе умножение, т. е. переход от линейного к плоскостному определению, это обнаруживается всего проще в том способе, каким, например, доказывается, что площадь трапеции равна произведению суммы ее параллельных сторон на половину высоты. Эта высота представляется, лишь как определенное число множества дискретных величин, которые должны быть суммированы. Эти величины суть линии, лежащие параллельно между теми двумя ограничивающими
Прием, состоящий в том, чтобы представлять площади, как суммы линий, употребляется, однако, часто и тогда, когда для достижения результата не применяется умножение, как таковое. Так поступают в тех случаях, когда является надобность найти величину, как определенное количество не из уравнения, а из пропорции. Например, что площадь круга относится к площади эллипса, большая ось которого равна диаметру этого круга, как большая ось к малой, доказывается, как известно, так, что каждая из этих площадей принимается за сумму принадлежащих ей ординат; каждая ордината эллипса относится к соответствующей ординате круга, как малая ось к большой, из чего заключают, что также относятся между собою и суммы ординат, т. е. площади. Если желают при этом избегнуть представления площади, как суммы линий, то прибегают к обычному совершенно излишнему вспомогательному средству — к трапециям бесконечно малой ширины; так как уравнение есть лишь пропорция, то при этом установляется сравнение лишь одного из двух линейных элементов площади. Другой, ось абсцисс, принимается в круге и эллипсе за равный, след. как множитель арифметического определения величины за =1, и поэтому пропорция оказывается зависящей всецело от отношение лишь одного определяющего момента.
Для представление площади требуются два измерения; но определение величины, даваемое в этой пропорции, касается исключительно одного момента; поэтому та прибавка или поправка, что представление суммы связывается лишь с этим одним моментом, есть собственно игнорирование того, чт'o здесь требуется для математической определенности.
То, что здесь сказано, служит также критерием для вышеупомянутого {210}метода неделимых Кавальери, находящего тут свое оправдание и не требующего помощи бесконечно малого. Эти неделимые при рассмотрении площадей суть линии, при рассмотрении пирамиды или конуса и т. д. квадраты, площади кругов; принимаемую за определенную основную линию или площадь он называет правилом; это постоянная величина и в ряду есть первый или последний член; сказанные неделимые параллельны ей, следовательно по отношению к фигуре определяются одинаково.
Общее основоположение Кавальери состоит в том (Exerc. geometr. VI — позднейшее сочинение Exerc. I, стр. 6), что все как плоские, так и телесные фигуры находятся в отношении к этим неделимым, что они могут быть сравниваемы между собою коллективно, а если в них есть какое-либо общее отношение, то и дистрибутивно. Для этой цели он в фигурах, имеющих равные основание и высоту, сравнивает отношения между линиями, проведенными параллельно им и на равном расстоянии от них; все такие определения некоторой фигуры имеют одинаковое определение и образуют собою весь ее объем. Таким путем Кавальери доказывает, например, и ту элементарную теорему, что при равных высотах площади параллелограммов относятся, как их основания; каждые две линии, одинаково отстоящие от основания и параллельные ему, проведенные в обеих фигурах, относятся к основаниям так же, как целые фигуры. В действительности линии не составляют объема фигуры, понимаемой как непрерывная, но суть этот объем, поскольку он определяется арифметически; линейное есть его элемент, посредством которого единственно постигается его определенность.
Мы пришли теперь к рефлексии над различением, имеющем место относительно того, в чем состоит определенность какой-либо фигуры, именно поскольку эта определенность имеет или такой характер, как в данном случае высота фигуры, или характер ее внешней границы. Если она есть внешняя граница, то допускается, что непрерывность фигуры, так сказать, следует за равенством или отношением границы; напр., равенство совпадающих фигур основывается на совпадении ограничивающих их линий. Ho y параллелограммов с одинаковыми высотою и основанием лишь последняя определенность есть внешняя граница; высота же, непараллельность вообще, на которой основывается второе главное определение фигур, их отношение, присоединяет к внешней границе второй принцип определения. Евклидово доказательство равенства параллелограммов, имеющих одинаковые высоту и основание, приводит их к треугольникам, к внешне ограниченному непрерывному; в доказательстве же Кавальери, и прежде всего в доказательстве пропорциональности параллелограммов, граница есть определенность величины, как таковая вообще, которая обнаруживается в каждой паре линий, проведенных в обеих фигурах на одинаковом расстоянии. Равные или состоящие в равном отношении с основанием линии, взятые коллективно, дают состоящие в равном отношении фигуры. Представление агрегата линий противоречит не{211}прерывности фигуры; но рассмотрение линий вполне исчерпывает ту определенность, о которой идет речь. Кавальери часто отвечает на то возражение, что представление неделимых еще не приводит к тому, чтобы можно было сравнивать между собою бесконечные по числу линии или плоскости (Geom. lib. II prop. 1 Schol.): он правильно указывает на то различие, что он сравнивает не их число, которого мы не знаем — т. е. которое правильнее, как было замечено, есть пустое вспомогательное представление, — но лишь величину, т. е. количественную определенность, как таковую, которая равна занимаемому этими линиями пространству; так как оно заключено в границы, то и эта величина заключена в те же границы; непрерывное есть не что иное, как само неделимое, говорит он; если бы первое было вне последнего, то оно было бы несравнимо; но было бы нелепо сказать, что ограниченные непрерывные несравнимы между собою.
Как видно, Кавальери желает отличать то, что принадлежит к внешнему существованию непрерывного, от того, в чем состоит его определенность, и что возвышается над последним лишь для сравнения и для цели теоремы. Правда, те категории, которыми он при этом пользуется, говоря, что непрерывное сложено или состоит из неделимых и т. п., недостаточны, так как при этом вместе с тем принимается в соображение представление непрерывного или, как сказано выше, его внешнее существование; вместо того, чтобы сказать, что «непрерывное есть не что иное, как само неделимое», было бы правильнее и тем самым само для себя ясно сказать, что определенность величины непрерывного такова же, как и самого неделимого. Кавальери не увлекается ложным выводом, будто бесконечное может быть более или менее, выводом, делаемым школою из того представления, что неделимые составляют непрерывное, и выражает далее (Geom. lib. VII praef.) более определенное сознание того, что его способ доказательства нисколько не принуждает представлять себе непрерывное сложенных из неделимых; непрерывные величины лишь пропорциональны неделимым. Он берет агрегаты неделимых не так, чтобы они подпадали определению бесконечности, не ради получения бесконечного множества линий или плоскостей, но поскольку им в них самих принадлежит определенное свойство и природа ограниченности. Но чтобы удалить и эту видимость затруднения, он не уклоняется от труда еще и в нарочно прибавленной того для седьмой книге доказать главные положения своей геометрии таким способом, который остается свободным от примеси бесконечности. Этот способ сводит доказательства к вышеупомянутой обычной форме наложения фигур одной на другую, т. е., как было замечено, к представлению определенности, как внешней пространственной границы.