Чтение онлайн

на главную - закладки

Жанры

Уставы небес, 16 глав о науке и вере
Шрифт:

Будущее развитие математики и логики действительно показало недостаточность гильбертовского подхода даже в пределах математики (не говоря уже об "аксиоматизации физики", см. гл.6). Мы имеем в виду прежде всего знаменитую теорему Геделя, согласно которой даже в арифметике натуральных чисел существуют утверждения, неопровержимые и недоказуемые на основе любого конечного набора аксиом. (Приведенная здесь формулировка не вполне точна и нуждается в многочисленных пояснениях; см., например, упомянутые выше книги Р. Пенроуза или популярно написанную брошюру В.А. Успенского "Теорема Геделя о неполноте", М., Наука, 1982; более систематическое изложение можно найти, например, в учебнике С. Клини "Математическая логика", М., Мир, 1973). Близкое (и в действительности эквивалентное) утверждение состоит в существовании алгоритмически неразрешимых задач, то есть таких задач, которые в принципе

не могут быть решены никаким компьютером, действующим на основе фиксированного набора правил. (Известно много конкретных примеров таких задач; скажем, не существует общего способа определить, можно или нельзя вымостить всю плоскость без зазоров, используя только многоугольные плитки из заданного конечного набора). Тем самым, математика неизбежно должна быть содержательной и "человеческой" (или, согласно платонистским взглядам, сверхчеловеческой), но ни в коем случае не "компьютерной", то есть бездумно выводимой из фиксированного набора правил:

Вы [сторонники взглядов Рассела и Гильберта] даете нам не крылья, а детские помочи. Но тогда мы имеем право требовать, чтобы эти помочи не давали нам падать. В такой помощи - единственное их оправдание. Если ценное имущество не приносит крупных доходов, то нужно по крайней мере, чтобы оно было в надежных руках. Нужно ли следовать вашим правилам слепо? Конечно, да, иначе нам могла бы помочь разобраться в них одна только интуиция. Но в таком случае необходимо, чтобы эти правила были непогрешимы; слепое доверие можно питать только к непогрешимому авторитету. Для вас это необходимость. Вы должны быть непогрешимы, или вас не будет (А. Пуанкаре, О науке, с.390).

Различие подходов и мировоззрений в вопросе об основаниях математики особенно ярко проявляется при рассмотрении проблем, связанных с идеей бесконечности. "Стандартная" математика XX века базируется на теории множеств, разработанной в XIX веке Г. Кантором (а говоря более технически на так называемой системе аксиом Цермело-Френкеля). Согласно Кантору, существуют разные степени (мощности) бесконечности: бесконечность счетных множеств, таких, как ряд натуральных чисел, бесконечность континуума, например, отрезка единичной длины (ту же мощность имеют множества точек ограниченных и неограниченных тел в пространстве любой размерности), и бесконечности более высокого порядка. Последние могут быть получены как множество всех подмножеств исходного бесконечного множества.

Линия состоит из множества точек, плоскость - из бесконечного множества линий; книга - из бесконечного множества плоскостей; сверхкнига - из бесконечного множества книг (Х.Л. Борхес, Книга песка).

Эти идеи имеют большое психологическое значение.

...После того, как наше переживание становится реальным процессом в реальном мире, а наше феноменологическое время простирается, как нечто космическое, на весь мир, мы все-таки подменяем континуум точным понятием действительного числа, вопреки существенной неточности, неустранимой из того, что нам надо... Во всем этом не просто проявляется какая-то насильственная систематизация или стремление к простоте мысли, вызванное нашими практическими задачами и целями: в действие вступает подлинный разум, раскрывающий присущий действительности "логос"... Конечно, наглядно созерцаемый и математический континуум не совпадают; между ними зияет пропасть. Тем не менее, существуют разумные мотивы, побуждающие нас стремиться к тому, чтобы от одного перейти к другому, - столь же разумные, как и те, которые заставляют при исследовании природы стремиться проникнуть "за" пределы той реальности, которая основывается на актах опыта...
– к стоящему за чувственными данными "подлинно объективному", бескачественному физическому миру. (Г. Вейль, Математическое мышление, с. 159).

Теория множеств Кантора очень далеко ("бесконечно далеко") выходит за рамки чувственного опыта. Вообще говоря, никакие суждения относительно бесконечных множеств не могут быть эмпирически проверяемы:

Всякая теорема математики должна быть доступна проверке. Когда я высказываю эту теорему, я утверждаю, что все проверки, которые я испробую, приведут к желаемому результату, и даже если одна из этих проверок требует труда, превосходящего человеческие силы, я утверждаю, что если много поколений сочтут нужным заняться этой проверкой, то и в этом случае она удастся. Теорема не имеет другого смысла; это остается верным и тогда, когда в ее формулировке говорится о бесконечных числах; но так как все проверки могут быть проведены только для конечных чисел, то отсюда следует, что всякая теорема, относящаяся к бесконечным числам или

вообще к тому, что называется бесконечным множеством... не может быть ничем иным, как сокращенным способом формулирования предложений, относящихся к конечным числам (А. Пуанкаре, О науке, с. 466).

Большие сомнения у многих математиков вызывала, например, аксиома выбора Цермело (если имеется любой набор - конечный или бесконечный множеств, то всегда можно образовать новое множество, выбрав по одному элементу из каждого множества, входящего в набор). С ее использованием доказываются весьма странные утверждения, скажем, теорема Банаха - Тарского. Согласно этой теореме, любое выпуклое тело можно разрезать на конечное число кусков таким образом, что, переставив их, мы получим выпуклое тело любого другого размера. Очевидно, что мир, описываемый аксиоматикой Цермело-Френкеля не может быть нашим физическим миром, где ничего подобного сделать нельзя. С другой стороны, отказ от аксиомы выбора существенно обедняет классическую математику. Возможно, правильный выход из этого тупика (согласно Пенроузу) состоит в допущении, что канторова теория множеств описывает платоновский мир математических идей, некоторые из которых имеют соответствие в нашем физическом мире. Ясно, однако, что слишком для многих математиков такой вывод окажется философски неприемлемым.

В то же время, канторова теория по-видимому не противоречит структуре человеческого мышления. Можно думать, что понятие континуума как некоторой первичной сущности, не сводимой к счетным множествам, действительно присуще человеческой психике. Каждый человек обладает, вероятно, зачатками топологического мышления, основанного на идее непрерывности. Г. Вейль говорил (Математическое мышление, с. 24-41) об абстрактной алгебре и топологии как двух альтернативных способах математического мышления (по выражению Вейля, за душу каждого математика борются ангел топологии и бес абстрактной алгебры). На уровне физиологии различные виды мышления связываются с полушариями человеческого мозга (правополушарное мышление непрерывное, образы, топология, левополушарное мышление - логическое, символы, буквы, слова, дискретное, алгебра). Ф. Меррелл-Вольф (в книге "Математика, философия и йога") связывает "обычное" двойственное сознание с дискретным пространством, а "просветленное" недвойственное сознание - с непрерывным пространством, используя также аналогию с канторовой теорией множеств.

Интересно сопоставить два главных типа математического мышления с психологической классификацией личностей (см. книгу К.Г. Юнга "Психологические типы" или труды по модной сейчас науке - соционике, напр., Е. Филатова, Соционика для вас, Новосибирск, 1994). Для это нужно принять во внимание, что в соответствии с данными психологических исследований пространство в восприятии человека обычно ассоциируется с непрерывной средой (символика воды, моря и т.д., см. главу 11), а восприятие времени дискретно (см. главу 15). В соционике восприятие преимущественно пространственных или временных отношений связывают с сенсорным или интуитивным типом личности, соответственно. Можно предположить наличие некоторых корреляций между этим делением и делением математиков на "геометров" и "алгебраистов" (на такую мысль наводят, в частности, интересные психологические наблюдения в книге Р. Пенроуза "Новый разум императора", однако вопрос нуждается в дальнейших исследованиях). Между прочим, в соционике для характеристики различных типов личности и межличностных взаимодействий широко используется геометрическая символика. Хотя подобное использование математики выглядит несколько бедным и искусственным по сравнению с ее применением в естественных науках, оно лишний раз подчеркивает психологическую нагрузку математических символов.

До некоторой степени противопоставление "счетного" мышления, основанного на понятии (натурального) числа, и топологического мышления, основанного на понятии непрерывности, соответствует различию количественного и качественного подходов. Современная математика является не только количественной, но и все больше развивает методы качественного анализа. Здесь уместно привести слова Руми:

Вы принадлежите к миру измерений, но пришли вы оттуда, где нет никаких измерений. Закройте первую лавку, пора открывать вторую.

Как мы отмечали выше, речь здесь идет о топологии, качественно исследующей свойства пространств и многообразий. С ней связаны такие дисциплины, как созданная Пуанкаре качественная теория дифференциальных уравнений, теория бифуркаций и теория особенностей гладких отображений; приложение этих теорий к широкому кругу естественнонаучных и даже социальных проблем получило известность под названием теории катастроф. Качественная сторона математики подчеркивается и в известном высказывании А. Пуанкаре:

Поделиться:
Популярные книги

Кодекс Охотника. Книга XXIII

Винокуров Юрий
23. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Кодекс Охотника. Книга XXIII

Помещица Бедная Лиза

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.40
рейтинг книги
Помещица Бедная Лиза

На границе империй. Том 9. Часть 5

INDIGO
18. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 5

Измена. Осколки чувств

Верди Алиса
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Осколки чувств

Купец VI ранга

Вяч Павел
6. Купец
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Купец VI ранга

Том 4. Наша Маша. Из записных книжек

Пантелеев Леонид
4. Собрание сочинений в четырех томах
Проза:
советская классическая проза
5.00
рейтинг книги
Том 4. Наша Маша. Из записных книжек

Бастард Императора. Том 4

Орлов Андрей Юрьевич
4. Бастард Императора
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Бастард Императора. Том 4

Сойка-пересмешница

Коллинз Сьюзен
3. Голодные игры
Фантастика:
социально-философская фантастика
боевая фантастика
9.25
рейтинг книги
Сойка-пересмешница

Страж Кодекса. Книга III

Романов Илья Николаевич
3. КО: Страж Кодекса
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Страж Кодекса. Книга III

Неудержимый. Книга XVIII

Боярский Андрей
18. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVIII

Генерал Скала и ученица

Суббота Светлана
2. Генерал Скала и Лидия
Любовные романы:
любовно-фантастические романы
6.30
рейтинг книги
Генерал Скала и ученица

Невеста драконьего принца

Шторм Елена
Любовные романы:
любовно-фантастические романы
5.25
рейтинг книги
Невеста драконьего принца

Новик

Ланцов Михаил Алексеевич
2. Помещик
Фантастика:
альтернативная история
6.67
рейтинг книги
Новик

Возвышение Меркурия. Книга 16

Кронос Александр
16. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 16