Чтение онлайн

на главную - закладки

Жанры

ВОЛШЕБНЫЙ ДВУРОГ

Бобров Сергей Павлович

Шрифт:

πr2 = π(R2/H2)• h2

Теперь предположим, что мы делим высоту конуса на n частей.

Тогда высота каждого цилиндрика будет H/n, а последовательные расстояния оснований цилиндриков от вершины конуса, то есть радиусы этих оснований, будут

h, 2h, 3h,... nh.

Поэтому сумма объемов этих цилиндриков равна

π(R2/H2)• H/h (h2 + 22h2 + ... + n2h2) = π R2/H (12 + 22 + ... + n2) / n3

Как и в предыдущей схолии, ты убедишься, что предел последнего множителя при неограниченном возрастании n будет равен 1/3, и для объема конуса получается выражение:

1/3 π R2 H

– 354 -

Множитель 1/3 ты можешь рассматривать как лежащую на этой формуле печать Великого Змия.

– Как интересно!
– сказал Илюша.
– А с объемом шара можно справиться таким способом?

– Я приведу тебе только чертеж, который, по преданию,

Архимед завещал вырезать на своем надгробном памятнике.

Здесь ты видишь цилиндр, вписанный в него шар радиуса R и конус. Разбей все три тела на тонкие "цилиндрические" слои и легко установишь, что на расстоянии h от центра шара площадь поперечного сечения самого шара равна:

π (R2– h2) = π R2– πh2

то есть разности площадей поперечных сечений цилиндра и конуса. Суммируя объемы всех тонких цилиндрических пластинок и переходя к пределу, как мы это делали для конуса, находим, что и объем шара тоже будет равен разности объемов цилиндра и конуса. Этот закон и был открыт Архимедом.

Таким путем можно найти не только объем всего шара, но и объем любого шарового слоя. В формулы войдет опять множитель 1/3, печать Великого Змия, свидетельствующая о том, что здесь приходилось интегрировать функцию, содержащую квадрат переменной (в данном случае - квадрат высоты h).

– Очень хорошо!
– отвечал мальчик.
– А теперь вот еще что. Ты назвал Великого Змия развертывателем спиралей. Что это значит?

– Это значит, что путем интегрирования можно получить длину дуги любой кривой, например параболы, окружности и так далее. В частности, и длину спирали. Мы ведь уже говорили, как находится длина дуги.

– Но я должен сознаться, - вздохнув, сказал Илюша, - что до сих пор не пойму, как при помощи этой спирали получается длина окружности, то есть почти квадратура круга?

– Конечно, история эта необычная, - отвечал Радикс.
– Из-за нее в средние века долго ломали голову над вопросом квадратуры круга и ни к какому разумному заключению не пришли. Совсем запутались. Начали даже поговаривать, что геометрия - наука, может быть, не слишком точная... Вес это довольно сложно.

– 355 -

Могу рассказать лишь о самом принципе этой работы Архимеда. Дело было так. До Византии еще дошла биография Архимеда, написанная его учеником Гераклидом. Затем она была утрачена. Но ее еще читал и изучал византийский математик Евтокий, оставивший

очень ценные комментарии к сочинениям Архимеда. По словам Евтокия,

Архимед дал два решения о квадратуре, причем одно из них было приближенным...

– Двадцать две седьмых!
– воскликнул Илья.

– Правильно!
– отвечал Радикс.
– А другое решение Архимеда было точным!

– А разве это возможно?

– Слушай меня как только можешь внимательно! Я расскажу тебе, в чем заключается принцип этой работы Архимеда. А уж потом мы постараемся рассудить, что возможно и что невозможно. Здесь вся сила в том, что Архимед, построив свою спираль, ввел в античную математику еще одну, как говорили греки, "механическую" замечательную кривую, то есть такую, свойства которой не могут быть изложены средствами, близкими к элементарной геометрии (в отличие, например, от многих, хотя и не всех свойств конических сечений). Такова и квадратриса, о которой мы уже говорили (эти кривые называются "трансцендентными" кривыми). В силу этого сочинение Архимеда о спиралях и критиковалось в древности! И даже очень жестоко! Только уж в семнадцатом веке в Европе эта дивная работа Архимеда наконец была оценена по своему превосходному достоинству. Нужны были новые основания, новый подход к пониманию для такой кривой, и гений Архимеда нашел их. Эти новые основания и были дифференциальным подходом к изучению кривой, то есть тонким изучением скорости изменения некоторых связанных с ней отрезков. И делается это опять-таки через ту же касательную.

Этот метод восходит к методу исчерпания Евдокса, но еще сильнее его. Он просто берет, как говорится, быка за рога.

Слушай далее, и ты поймешь, в чем тут дело. Итак, самым главным в работе Архимеда была задача провести касательную к этой новой своеобразной кривой, которую он назвал спиралью. Она, как и квадратриса, построена с помощью двух движений. Первое - это вращение радиуса-вектора (именно так называется тот отрезок прямой, о котором мы уже вспоминали в Схолии Пятнадцатой; его конец чертит нашу спираль), второе - рост этого радиуса-вектора пропорционально углу, на который повернулся вектор. Длина радиуса-вектора и угол его поворота называются полярными координатами точки, являющейся концом радиуса-вектора. Догадываешься, почему эти величины можно называть координатами?

– 356 -

– Кажется, догадываюсь... Я думаю, что с помощью радиуса-вектора, зная его начало, то есть полюс всего этого построения, и зная угол, под которым радиус-вектор находится по отношению к полярной оси, и его длину, можно определить любую точку на плоскости. Вот и выходит, что это координаты!

– Правильно, - подтвердил Радикс, - теперь слушай дальше. Построим с тобой касательную к спирали в заданной точке, причем будем учитывать направление движения спирали, то есть либо от полярной осп против часовой стрелки, либо обратно. Первое из этих направлений мы будем считать положительным...

– Постой!
– прервал его Илюша.
– Например, граммофонная пластинка вращается по часовой стрелке, то есть в отрицательном направлении, а если бы мы поместили наш радиус-вектор в самую середину пластинки да еще заставили бы его обегать пластинку, начиная не с края, как обычно делается, а с серединки (где полагается находиться полюсу полярных координат), то он бы вращался в положительном направлении... Только всю музыку он сыграл бы сзади наперед! Но ведь нам сейчас это неважно. Так я говорю?

Поделиться:
Популярные книги

Скандальная свадьба

Данич Дина
1. Такие разные свадьбы
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Скандальная свадьба

Дорогами алхимии

Видум Инди
2. Под знаком Песца
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Дорогами алхимии

(Не)зачёт, Дарья Сергеевна!

Рам Янка
8. Самбисты
Любовные романы:
современные любовные романы
5.00
рейтинг книги
(Не)зачёт, Дарья Сергеевна!

Искатель 2

Шиленко Сергей
2. Валинор
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Искатель 2

Я не Монте-Кристо

Тоцка Тала
Любовные романы:
современные любовные романы
5.57
рейтинг книги
Я не Монте-Кристо

Шайтан Иван 3

Тен Эдуард
3. Шайтан Иван
Фантастика:
попаданцы
альтернативная история
7.17
рейтинг книги
Шайтан Иван 3

Господин следователь

Шалашов Евгений Васильевич
1. Господин следователь
Детективы:
исторические детективы
5.00
рейтинг книги
Господин следователь

Инженер Петра Великого 2

Гросов Виктор
2. Инженер Петра Великого
Фантастика:
попаданцы
альтернативная история
фэнтези
5.00
рейтинг книги
Инженер Петра Великого 2

Менталист. Эмансипация

Еслер Андрей
1. Выиграть у времени
Фантастика:
альтернативная история
7.52
рейтинг книги
Менталист. Эмансипация

Сложный пациент

Рам Янка
5. Доктор, помогите...
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сложный пациент

Сумеречный Стрелок 3

Карелин Сергей Витальевич
3. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 3

Прорвемся, опера! Книга 4

Киров Никита
4. Опер
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Прорвемся, опера! Книга 4

Жандарм 2

Семин Никита
2. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Жандарм 2

Лэрн. На улицах

Кронос Александр
1. Лэрн
Фантастика:
фэнтези
5.40
рейтинг книги
Лэрн. На улицах