Вселенная из ничего
Шрифт:
Хотя такое обсуждение приведет нас к дальнейшему улучшению и обобщению понятий «ничто» и «нечто», я хочу вернуться к предпринятым промежуточным шагам по изложению довода о неизбежности создания чего-то.
Как я уже определил ранее, рассматриваемым «ничто», из которого возникло наше наблюдаемое «нечто», является «пустое пространство». Однако как только мы сделаем возможным слияние квантовой механики и общей теории относительности, мы можем расширить этот аргумент на случай, когда возникает само пространство.
Общая теория относительности, будучи теорией гравитации, является, по своей
Поэтому наличие квантовой теории гравитации означало бы, что правила квантовой механики будут применяться к свойствам пространства, а не только к свойствам объектов, существующих в пространстве, как в обычной квантовой механике.
Расширить квантовую механику, чтобы включить такую возможность, сложно, но математическое представление, разработанное Ричардом Фейнманом, которое привело к современному пониманию происхождения античастиц, хорошо подходит для выполнения этой задачи. Методы Фейнмана сосредотачиваются на ключевом факте, о котором я упоминал в начале этой главы: квантовомеханические системы изучают все возможные траектории, даже те, которые классически запрещены, по мере того как они эволюционируют во времени.
С целью их изучения Фейнман разработал «формулировку через интеграл по траекториям», чтобы делать прогнозы. В этом методе мы рассматриваем все возможные траектории между двумя точками, которыми может следовать частица. Потом мы назначаем вероятностную оценку для каждой траектории на основе четко определенных принципов квантовой механики, а затем суммируем по всем путям, чтобы определить окончательные (вероятностные) предсказания для движения частиц.
Стивен Хокинг был одним из первых ученых, в полной мере развивших эту идею до возможной квантовой механики пространства-времени (объединения нашего трехмерного пространства с одним измерением времени, чтобы сформировать четырехмерную единую пространственно-временную систему, как этого требует специальная теория относительности Эйнштейна). Достоинством методов
Фейнмана было то, что фокусировка на всех возможных путях означает, что результаты можно отобразить в зависимости от конкретных пространственных и временных меток, относящихся к каждой точке на каждом пути. Поскольку теория относительности говорит нам, что различные наблюдатели, движущиеся друг относительно друга, будут измерять расстояние и время по-разному, и поэтому присваивать различные значения каждой точке в пространстве и времени, математический подход, независимый от различных меток, которые различные наблюдатели могут назначить каждой точке в пространстве и времени, особенно полезен.
И наиболее полезен он, возможно, с учетом общей теории относительности, где особая маркировка точек пространства и времени становится совершенно произвольной, так что разные наблюдатели в разных точках в гравитационном поле измеряют расстояния и время по-разному, и все, что в конечном счете определяет поведение системы, представляет собой геометрическую величину, вроде кривизны, которая оказывается
Как я уже несколько раз упоминал, общая теория относительности не полностью согласуется с квантовой механикой, по крайней мере, насколько мы можем судить, и, следовательно, нет вполне однозначного метода для определения техники интегрирования по траектории Фейнмана в общей теории относительности. Поэтому мы должны сделать некоторые предположения заранее, опираясь на вероятность, и проверить, имеют ли результаты смысл.
Если мы хотим рассмотреть квантовую динамику пространства и времени, то надо понимать, что в «суммах» Фейнмана, необходимо учитывать все различные возможные конфигурации, описываемые различными геометриями, которые пространство может принимать на промежуточных стадиях любого процесса, когда царит квантовая неопределенность. Это означает, что мы должны рассмотреть пространство, которое сильно изогнуто произвольным образом на малых расстояниях и коротких временах (настолько коротких и малых, что мы не можем их измерить, так что квантовые странности могут царствовать безраздельно). Эти странные конфигурации при этом не наблюдались бы многочисленными классическими наблюдателями, такими как мы, когда мы пытаемся определить свойства пространства на больших расстояниях и временах.
Но давайте рассмотрим еще более странные возможности. Вспомните, что, в квантовой теории электромагнетизма частицы могут произвольно выскакивать из пустого пространства, при условии, что они снова исчезают за время, определяемое принципом неопределенности. Тогда, по аналогии, в квантовой сумме Фейнмана при возможных пространственно-временных конфигурациях, нужно ли рассматривать возможность небольших, компактных пространств, которые сами появляются и исчезают? В более общем смысле, как насчет пространств, которые могут иметь «дыры» или «ручки», как пончики, макаемые в пространство-время?
Это открытые вопросы. Однако если нельзя придумать серьезное основание для исключения таких конфигураций из квантово-механической суммы, которая определяет свойства развивающейся вселенной, а на сегодняшний день, насколько я знаю, таких оснований не существует, то в соответствии с общим принципом, который остается в силе везде, где я знаю, в природе, а именно, что все не запрещенное законами физики фактически должно произойти, это представляется наиболее оправданным при рассмотрении этих возможностей.
Как подчеркнул Стивен Хокинг, квантовая теория гравитации допускает создание, хотя, возможно, на мгновение, самого пространства, где его раньше не было. Несмотря на то, что в своей научной работе он не пытался решить загадку «чего-то из ничего», ее фактически может окончательно решить квантовая гравитация.
«Виртуальные» вселенные, то есть возможные, небольшие, компактные пространства, которые могут неожиданно появляться и исчезать на время столь короткое, что мы не можем его измерить непосредственно — это замечательные теоретические конструкции, но они, похоже, не объясняют, как что-то может возникнуть из ничего на более продолжительное время, большее, чем это делают виртуальные частицы, заполняющие в остальном пустое пространство.