Я — не моя ДНК. Генетика предполагает, эпигенетика располагает
Шрифт:
Новатор Вольф, наоборот, говорил не о маловероятной идее «разрастания», а о существовании процесса, при котором загадочные силы природы допускают формирование структур de novo из бесструктурных масс, делая слияние яйцеклетки и сперматозоида возможным. И эта магия, обозначим это таким образом, эта «существенная сила», как он ее назвал, была нечем иным, как эпигенезом.
С точки зрения современной науки (ни много ни мало два с половиной века спустя!), хотя Вольф и не осмелился предположить, какие именно силы отвечают за организацию материи, которая позволяет зиготе создавать организм, можно сказать, что отчасти его теория уже тогда признавала процессы перепрограммирования и контролируемой регуляции генетической экспрессии.
Однако термин «эпигенетика» сам по себе появился только в 1942 году, когда Конрад Уоддингтон, профессор Эдинбургского
Хотя в тот момент Уоддингтон не мог предложить никакие модели механизмов и работы эпигенетических процессов, его определение и особенно принятие существования двух разных типов развития, задействованных в наследовании, сделали его прародителем эпигенетики и принесли ему признание и награды. Его вклад был настолько значителен, что позволил ему открыть первую эпигенетическую лабораторию в 1950 году.
Определение Уоддингтона оставалось нетронутым в течение десятков лет, пока в 1987 году его не переформулировал молекулярный биолог Робин Холлидей — один из первых ученых, который использовал молекулярную биологию в изучении процессов старения. Свое детство он провел, переезжая с места на место со своей семьей, затем поступил в Кембридж, а в 1953 году, когда будущий ученый учился на последнем курсе, была расшифрована структура двойной спирали ДНК. В 1954 году, за год до окончания университета, после участия в конференции, посвященной этому открытию, он решил, что хочет посвятить все свои силы генетическим исследованиям. Он добился выдающихся результатов, и его исследования и открытия дали толчок невероятному прогрессу в этой области. В 1964 году он, например, предложил модель рекомбинации, то есть обмена генетической информацией между молекулами ДНК, которая был назван в его честь — «структура Холлидея». Речь идет о чрезвычайно важной модели, поскольку она предлагает объяснение тому, как две гомологичные молекулы ДНК могут скрещиваться и обмениваться генетическим материалом.
Десять лет спустя, в 1975 году, Холлидей смог доказать, что метилирование ДНК влечет за собой сайленсинг генов у млекопитающих. До самой своей смерти в 2014 году он не переставал работать и заниматься исследованиями. Однако, по нашему мнению, самое выдающееся его достижение заключалось в том, что он дал ясное описание того, что такое эпигенетика и чем она отличается от генетики. Он сделал это самым точным образом, после его объяснения никакие слова больше не нужны:
Свойства генов высших организмов могут изучаться на двух уровнях: первый — механизм их наследственной передачи, который является основным компонентом генетики и хорошо изучен, и второй — механизм их деятельности в процессе развития организма, от оплодотворенного яйца до взрослой особи, который до сих пор не до конца понятен. Изменения в генной активности в процессе развития известны как эпигенетические. […].
Экспрессия генов
Когда мы говорим об экспрессии генов, то имеем в виду момент, в который гены «говорят».
Что говорят гены? Да, это нужно объяснить: в генах содержится информация для формирования белков, так что когда ген экспрессируется, он активируется и его информация считывается для формирования конкретного белка.
В 1994 году, семь лет спустя после того как Робин Холлидей сформулировал свое первое определение эпигенетики (процитированное выше), он предложил два новых варианта этой дефиниции, в первую очередь указав на то, что изменения в экспрессии генов появляются не только в процессе развития, но и во взрослом состоянии организма. Опираясь на этот нюанс, Холлидей переформулировал определение эпигенетики: это «изучение изменений в экспрессии генов, которые происходят в организмах
Это новое определение, в свою очередь, обозначило новую проблему: наследование паттернов экспрессии генов. Холлидей подчеркивал, что ДНК может быть подвержена необратимым изменениям, которые влияют на последовательность, и эти модификации передаются следующим поколениям. С другой стороны, «возможно, существуют связанные с экспрессией генов изменения, наследуемые напрямую, которые могут быть обратимы в последующих стадиях и не подразумевают изменения ДНК», или, другими словами, «клеточное наследование, не основанное на различиях в последовательности ДНК». Холлидей почти пришел к определению современной концепции эпигенетики, которое окончательно сформировалось, сочетая в себе идею изменений в экспрессии генов и способности этих изменений передаваться по наследству.
И вот перед нами финальное (но это только на данный момент) определение эпигенетики, которая с этими последними дополнениями, все еще словами Холлидея звучит так: «изучение изменений в генетической функции, которые наследуются без изменения в последовательности ДНК».
Хорошо, а сейчас, когда мы уже определили границы эпигенетики, может, мы уже остановимся и пойдем отдохнем?
Ну уж нет! Наука должна двигаться вперед, и сейчас самое время, чтобы задавать новые вопросы, а именно:
О каких изменениях в функционировании генов мы сейчас говорим?
Почему они так важны и в каких ситуациях происходят?
Эпигенетические изменения
До настоящего времени мы говорили об эпигенетических изменениях без углубления в природу этих вариаций. В научном сообществе эпигенетические изменения долгие годы считались скорее чем-то мистическим, чем осязаемой и измеримой реальностью.
Это происходило из-за того, что традиционной генетике казалось парадоксом, что два аллеля могут иметь ту же самую генетическую последовательность, но разные возможности наследования. Это противоречие разрешалось предположением, что, помимо последовательности ДНК, наследовалось также состояние экспрессии или активированности генов, которое было установлено и унаследовано с помощью некоей модели, заключающейся в том, что аллель может быть в «закрепленнном» или «нетронутом» состоянии в зависимости оттого, работает эта модель или нет.
Напротив, на сегодняшний день мы знаем, что эпигенетическое воздействие основано на одной из физических модификаций, которая определяет возможности экспрессии аллеля. Эти модификации идентифицированы и могут быть двух типов: с одной стороны, те, что напрямую влияют на молекулу ДНК, и с другой стороны, те, что имеют место не в ДНК, а в гистонах — белках, связанных с ДНК.
У ДНК есть собственный язык, состоящий из четырех оснований, или букв А, Т, Ц и Г, которые соответствуют аденину, тимину, цитозину и гуанину соответственно. Эти основания распределяются одно за другим, формируя огромную цепочку, или нить, ДНК. Интересно, что нить ДНК не изолирована, а прикручивается к другой нити ДНК таким образом, что вместе они формируют спираль — знаменитую двойную спираль ДНК. В этой двойной спирали каждое основание, которое составляет ДНК, находится напротив комплементарного ему основания и связано с ним химически (рисунок 5), и эта комплементарность всегда является сочетанием аденина и тимина (или наоборот) и цитозина и гуанина (или наоборот).
Рис. 5. Двойная цепочка в спирали ДНК в процессе репликации, чтобы создать «дочерние» двойные цепочки (на рисунке А соответствует А, Т — Т, G — Г, С — Ц)
Из этих четырех букв складываются трехбуквенные слова, которые соответствуют аминокислотам, формирующим белки. Существует как минимум еще одна, пятая, буква кода, но она спрятана.
И дело в том, что на самом деле, говоря о четырех основаниях, мы неизбежно упрощаем ситуацию, так как подробный анализ состава оснований ДНК организма позволил бы нам найти маленький процент малочисленных оснований, которые являются вариантами четырех первоначальных букв.