Я — не моя ДНК. Генетика предполагает, эпигенетика располагает
Шрифт:
А дело все в том, что, как мы уже говорили, один из существующих типов белков в хроматине — гистоны — отвечает в основном за упаковку ДНК в ядре клетки.
И эта доминирующая роль хроматина, как и его функция, были неизвестны еще несколько лет назад: изначально хроматин казался просто скелетом, а гистоны — белками, которые создают структуры шарообразной формы, вокруг которых оборачивается ДНК. Именно по этой причине микроскопическая картинка очень похожа на жемчужные бусы, то есть на статичную структуру, монотонную и повторяющуюся.
В этих особых бусах структурная единица хроматина, то есть жемчужина, получила название
В 1970-е годы прогресс в исследованиях структуры хроматина был заметен невооруженным глазом. Эти исследования сформировали представление о статичной модели хроматина, и возможно, поэтому в последующие годы интерес к ним сильно ослабел. И так продолжалось целое десятилетие, пока в начале 1990-х годов результаты новых исследований структуры хроматина не активизировали работу по его изучению.
Два открытия оказались основополагающими. Первое — структурный мотив, присутствующий во многих транскрипционных факторах и отвечающий за взаимодействие гистонов друг с другом и с ДНК. Второе — сложные механизмы, занимающиеся модификациями хроматина; механизмы, являющиеся частью самого хроматина и отвечающие за то, чтобы он выстраивался в различные структуры, которые делают его сочетающимся или несочетающимся с транскрипционной активностью.
Далее остановимся немного на этих механизмах.
Два типа механизмов
Существует два типа механизмов, модифицирующих хроматин: первый состоит из групп белков, которые используют выделяемую некоторыми молекулами энергию, чтобы изменить структуру хроматина. Эти группы получили название комплексов ремоделирования хроматина, и они помогают нуклеосомам скользить по ДНК в движении, позволяющем определенным последовательностям, которые блокируются наличием нуклеосом, стать доступными для ядерных факторов, и наоборот.
Комплексы ремоделирования хроматина — группы белков, способные двигать нуклеосомы хроматина, делая его более открытым или закрытым для проникновения других белковых групп, которые регулируют активность генов.
Поэтому деятельность комплексов ремоделирования специализируется на регуляторной части конкретного гена. Во многих случаях это движение делает последовательности доступными для транскрипционных механизмов, а соответственно, и для синтеза РНК. В других случаях комплексы ремоделирования хроматина, наоборот, производят более компактную структуру хроматина, которая затрудняет доступ транскрипционных механизмов.
Второй тип механизмов, которые модифицируют хроматин, состоит из ферментов — модификаторов гистонов. Речь идет о ферментах, которые действуют непосредственно на гистоны, добавляя группы, их модифицирующие. В этом случае ударения ставятся на гистоны, то есть знак, который воздействует на деятельность ДНК, был поставлен не на самой ДНК, а на ее оболочке. Речь идет об одном очень хитром маневре: дело в том, что природа нашла способ отмечать такие связки — хроматин. Таким образом ядро клетки может распознавать эти помеченные связки и специально распутывать те, которые нужно использовать. Просто экономия места.
С
Каким может быть эпигенетическое состояние хроматина?
По последним доступным сведениям, хроматин может находиться в различных эпигенетических состояниях, которые можно разделить на две группы. Первая зависит от положения нуклеосом на последовательности ДНК. Поэтому согласно локализации нуклеосом некоторые последовательности становятся доступными или недоступными для транскрипционных факторов. Эти позиции наследуются, и их движение на протяжении последовательности подчиняется деятельности комплексов ремоделирования хроматина.
Вторая группа — состояние модификации гистонов, так как эти специализированные белки имеют собственный язык.
Стоит отметить, что в последнее время изучение гистонов стало модным среди молекулярных биологов (да, мы уже об этом говорили, так что не удивляйтесь: ученые обычно довольно странный народ). А чему обязан такой внезапный интерес к этим белкам, которые всего несколько лет назад считались однообразными и скучными? Как вообще получилось, что они наделали столько шума в мире регуляции экспрессии генов?
Этот новый интерес уходит корнями именно в то, что раньше их делало такими скучными, — природа
сделала гистоны до чрезвычайности повторяющимися белками.
Объясним. Чтобы наглядно продемонстрировать консервативность гистонов, нужно всего лишь сравнить последовательность их аминокислот у таких эволюционно далеких друг от друга видов, как горох и человек. В результате мы не без удивления обнаруживаем, что различий между этими двумя последовательностями почти нет. Эта однородность гистонов позволяет ДНК упаковываться в блоки и превращаться в чрезвычайно компактную структуру, и именно этот феномен пробудил интерес ученых всего мира.
Глоссарий
Аллели — два варианта, в которых представлен ген диплоидного организма. Человек имеет два аллеля на каждый ген, которые могут быть одинаковыми или различными.
Аминокислота — основной компонент белка. Каждая аминокислота кодируется комбинацией из трех азотистых оснований.
Белок — молекула, сформированная цепочкой аминокислот. Белки выполняют множество функций (способствуют структурированию, передают сигнал, катализируют химические реакции и т. д.).
Белок МеСР2 — составляет вместе с белками MBD1, MBD2, MBD3 и MBD4 семейство со связью с метилированной ДНК. Эти белки присоединяются только к участкам ДНК, которые были до этого метилированы.
Бета-амилоиды — пептиды, или маленькие белки, чрезмерное скопление которых в мозге приводит к различным заболеваниям, среди которых болезнь Альцгеймера.
Ген — единица генетической информации. Участок ДНК, который содержит необходимую информацию для формирования белка или функциональной РНК. Определение гена также может включать в себя ДНК, которая не кодирует, а участвует в регуляции экспрессии генов.