Чтение онлайн

на главную - закладки

Жанры

Занимательная астрономия
Шрифт:

Далее приводим оценку блеска светил на небе Венеры, Марса и Юпитера без новых пояснений, так как они представляют собой лишь количественное выражение того, о чем говорилось уже в разделе «Чужие небеса».

На небе Марса и Венеры:

На небе Юпитера:

Оценивая яркость планет на небе их собственных спутников, следует на первое место поставить «полный» Марс в небе Фобоса (—22,5), затем «полный» Юпитер в небе V спутника (—21) и «полный» Сатурн в небе его спутника Мимаса (—20): Сатурн здесь всего впятеро менее ярок, чем

Солнце!

Поучительна, наконец, следующая оценка блеска планет, наблюдаемых одна с другой. Располагаем их в порядке убывания блеска.

Отсюда видно, что на небе главных планет самыми яркими светилами являются Венера, наблюдаемая с Меркурия, Земля, видимая с Венеры, и Земля, видимая с Меркурия.

Звездная величина

Почему телескоп не увеличивает звезд?

Людей, впервые направляющих зрительную трубу на неподвижные звезды, поражает то, что труба, так заметно увеличивающая Луну и планеты, нисколько не увеличивает размеров звезд, даже уменьшает их, превращая в яркую точку, не имеющую диска. Это заметил еще Галилей, первый человек, взглянувший на небо вооруженным глазом. Описывая свои ранние наблюдения с помощью изобретенной им трубы, он говорит:

«Достойно замечания различие в виде планет и неподвижных звезд при наблюдении через трубу. Планеты представляются маленькими кружками, резко очерченными, как бы малыми лунами; неподвижные же звезды не имеют различимых очертаний… Труба увеличивает только их блеск, так что звезды 5-й и 6-й величины делаются по яркости равными Сириусу, который является самой блестящей из неподвижных звезд».

Чтобы объяснить такое бессилие телескопа по отношению к звездам, придется напомнить кое-что из физиологии и физики зрения. Когда мы следим за удаляющимся от нас человеком, его изображение на сетчатке глаза становится все меньше. При достаточном удалении голова и ноги человека настолько сближаются на сетчатке, что попадают уже не на разные ее элементы (нервные окончания), но на один и тот же, и тогда человеческая фигура кажется нам точкой, лишенной очертании. У большинства людей это наступает тогда, когда угол, под которым усматривается предмет, уменьшается до Г. Назначение телескопа состоит в том, чтобы увеличить угол, под которым глаз видит предмет, или, что то же самое, растянуть изображение каждой детали предмета на несколько смежных элементов сетчатки. О телескопе говорят, что он «увеличивает в 100 раз», если угол, под которым мы видим предметы в этот телескоп, в 100 раз больше угла, под которым мы на том же расстоянии видим их простым глазом. Если же какая-нибудь деталь и при таком увеличении усматривается под углом меньше Г, то данный телескоп недостаточен для рассмотрения этой подробности.

Нетрудно рассчитать, что самая мелкая подробность, какую можно различить на расстоянии Луны в телескоп, увеличивающий в 1000 раз, имеет в поперечнике ПО м, а на расстоянии Солнца – 40 км. Но если тот же расчет сделать для ближайшей звезды, то получим огромную величину – 12 000 000 км.

Поперечник нашего Солнца меньше этой величины в 8 1/2 раз. Значит, перенесенное на расстояние ближайшей звезды, Солнце наше должно казаться точкой даже в телескоп с 1000-кратным увеличением. Ближайшая звезда должна обладать объемом, в 600 раз большим Солнца, чтобы сильные телескопы могли показать ее диск. На расстоянии Сириуса звезда должна для этого быть больше Солнца по объему в 5000 раз. Так как большинство звезд расположено гораздо дальше сейчас упомянутых, а размеры их в среднем не превышают в такой степени размеров Солнца, то звезды и в сильные телескопы представляются нам точками.

«Ни одна звезда на небе, – говорит Джине, – не имеет большего углового размера, чем булавочная головка с расстояния в 10 км, и нет еще такого телескопа, в который предмет столь малых размеров был бы виден, как диск». Напротив, крупные небесные тела, входящие в состав нашей солнечной системы показывают при наблюдении в телескоп свои диски тем крупнее, чем больше увеличение. Но, как мы уже имели случай упомянуть, астроном встречается здесь с другим неудобством: вместе с увеличением изображения ослабевает его яркость (вследствие распределения потока лучей на большую поверхность), слабая же яркость затрудняет различение подробностей. Потому при наблюдении планет и особенно комет приходится пользоваться лишь умеренными увеличениями телескопа.

Читатель, пожалуй, задаст вопрос: если телескоп не увеличивает звезд, то зачем же употребляют его при их наблюдении?

После сказанного в предыдущих статьях едва ли нужно долго останавливаться на ответе. Телескоп бессилен увеличивать

видимые размеры звезд, но он усиливает их яркость, а следовательно, умножает число звезд, доступных зрению.

Второе, что достигается благодаря телескопу, это разделение тех звезд, которые представляются невооруженному глазу сливающимися в одну. Телескоп не может увеличивать видимого поперечника звезд, но увеличивает видимоерасстояние между ними. Поэтому телескоп открывает нам двойные, тройные и еще более сложные звезды там, где невооруженный глаз видит одиночную звезду. Звездные скопления, для простого глаза сливающиеся за дальностью расстояния в туманное пятнышко, а в большинстве случаев и вовсе невидимые, рассыпаются в поле телескопа на многие тысячи отдельных звезд.

И, наконец, третья услуга телескопа при изучении мира звезд состоит в том, что он дает возможность измерять углы с поразительной точностью: на фотографиях, полученных с современными большими телескопами, астрономы измеряют углы величиной в О",01. Под таким углом усматривается копейка с расстояния 300 км или человеческий волос с расстояния 100 м!

Как измерили поперечники звезд?

В самый сильный телескоп, как мы сейчас объяснили, нельзя увидеть поперечники неподвижных звезд. До недавнего времени все соображения о том, каковы размеры звезд, были только догадками. Допускали, что каждая звезда в среднем примерно такой же величины, как наше Солнце, но ничем не могли подкрепить этой догадки. И так как для различения звездных диаметров необходимы более мощные телескопы, чем самые сильные телескопы нашего времени, то задача определения истинных диаметров звезд казалась неразрешимой.

Так обстояло дело до 1920 г., когда новые приемы и орудия исследования открыли астрономам путь к измерению истинных размеров звезд.

Этим новейшим достижением астрономия обязана своей верной союзнице – физике, не раз оказывавшей ей самые ценные услуги.

Мы сейчас изложим сущность способа, основанного на явлении интерференции света.

Чтобы уяснить принцип, на котором основан этот метод измерений, произведем опыт, требующий несложных средств: небольшого телескопа, дающего увеличение в 30 раз, и находящегося на расстоянии 10—5 м от него яркого источника света, загороженного экраном с очень узкой (несколько десятых долей миллиметра) вертикальной щелью. Объектив закроем непрозрачной крышкой с двумя круглыми отверстиями около 3 мм в диаметре, расположенными симметрично относительно центра объектива на расстоянии 15 мм друг от друга (рис. 72). Без крышки щель в телескоп имеет вид узкой полосы со значительно более слабыми полосками по бокам. При наблюдении же с крышкой центральная яркая полоса представляется исчерченной вертикальными темными полосами. Эти полосы появились как следствие взаимодействия (интерференции) двух световых пучков, прошедших сквозь два отверстия в крышке объектива. Если закрыть одно из отверстий, – полоски исчезнут.

Рис. 72. Схема установки, поясняющей устройство прибора интерферометра для измерения угловых диаметров звезд (подробности в тексте)

Если отверстия перед объективом сделать подвижными, так что расстояние между ними можно будет изменять, то по мере их раздвижения темные полоски будут становиться все менее ясными и, наконец, исчезнут. Зная расстояние между отверстиями в этот момент, можно определить угловую ширину щели, т. е. угол, под которым видна ширина щели наблюдателю. Если же знать расстояние до самой щели, то можно вычислить ее действительную ширину. Если вместо щели у нас будет маленькое круглое отверстие, то способ определения ширины такой «круглой щели» (т. е. диаметра кружка) остается тем же самым, надо лишь полученный угол умножить на 1,22.

При измерении диаметров звезд мы следуем тем же путем, но ввиду чрезвычайной малости углового диаметра звезд должны применять весьма большие телескопы.

Помимо работы описанным инструментом, интерферометром, есть и другой, более окольный способ оценки истинного диаметра звезд, основанный на исследовании их спектров.

По спектру звезды астроном узнает ее температуру, а отсюда вычисляет величину излучения 1 см2 ее поверхности. Если, кроме того, известны расстояние до звезды и ее видимый блеск, то определяется и величина излучения всей ее поверхности. Отношение второй величины к первой дает размер поверхности звезды, а значит, и ее диаметр. Таким образом, найдено, например, что поперечник Капеллы в 16 раз больше солнечного, Бетельгейзе – в 290 раз, Альдебарана – в 48 раз, Арктура – в 30 раз, Сириуса – в 2 раза, Беги – в 2 1/2 раза, а поперечник спутника Сириуса составляет 0,02 солнечного.

Поделиться:
Популярные книги

Последняя Арена 5

Греков Сергей
5. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 5

#Бояръ-Аниме. Газлайтер. Том 11

Володин Григорий Григорьевич
11. История Телепата
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
#Бояръ-Аниме. Газлайтер. Том 11

Я уже князь. Книга XIX

Дрейк Сириус
19. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я уже князь. Книга XIX

Имперский Курьер

Бо Вова
1. Запечатанный мир
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Имперский Курьер

Курсант: Назад в СССР 10

Дамиров Рафаэль
10. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 10

Инквизитор Тьмы 2

Шмаков Алексей Семенович
2. Инквизитор Тьмы
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Инквизитор Тьмы 2

Соль этого лета

Рам Янка
1. Самбисты
Любовные романы:
современные любовные романы
6.00
рейтинг книги
Соль этого лета

Хорошая девочка

Кистяева Марина
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Хорошая девочка

Законы Рода. Том 2

Flow Ascold
2. Граф Берестьев
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 2

Кровь эльфов

Сапковский Анджей
3. Ведьмак
Фантастика:
фэнтези
9.23
рейтинг книги
Кровь эльфов

Позывной "Князь"

Котляров Лев
1. Князь Эгерман
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Позывной Князь

Эволюционер из трущоб. Том 5

Панарин Антон
5. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб. Том 5

Князь Мещерский

Дроздов Анатолий Федорович
3. Зауряд-врач
Фантастика:
альтернативная история
8.35
рейтинг книги
Князь Мещерский

Измена. Избранная для дракона

Солт Елена
Любовные романы:
любовно-фантастические романы
3.40
рейтинг книги
Измена. Избранная для дракона