Занимательная астрономия
Шрифт:
«Если снаряд выпущен отвесно вверх на экваторе, то он при вылете из орудия обладает еще и круговой скоростью точек экватора по направлению на восток (465 м/с). С этой скоростью снаряд будет переноситься параллельно экватору. Точка на высоте 6400 км, находившаяся в момент выстрела отвесно над точкой отправления снаряда, перемещается по кругу двойного радиуса с двойною скоростью. Она, следовательно, опережает снаряд в восточном направлении. Когда снаряд достигнет высшей точки своего пути, он будет находиться не отвесно над пунктом отправления, а отстанет от него к западу. То же произойдет и при обратном падении снаряда. В результате снаряд за 70 минут полета вверх и обратно отстанет примерно на 4000 км к западу. Здесь и следует ожидать его падения. Чтобы заставить
Совершенно иначе решается подобная задача К. Фламмарионом в его «Астрономии»:
«Если выстрелить из пушки, обратив ее прямо вверх, к зениту, то ядро снова упадет в жерло пушки, хотя за время его подъема и нисхождения пушка передвинется с Землей к востоку. Причина очевидна. Ядро, поднимаясь вверх, ничего не теряет из скорости, сообщенной ему движением Земли. Полученные им два толчка не противоположны: оно может пройти километр вверх и в то же время сделать, например, 6 км к востоку. Движение его в пространстве будет совершаться по диагонали параллелограмма, одна сторона которого 1 км, другая – 6 км. Вниз под влиянием тяжести оно будет двигаться по другой диагонали (вернее, по кривой, вследствие того, что падение ускоренное) и как раз упадет снова в жерло пушки, которая по-прежнему остается в вертикальном положении».
«Произвести такой опыт было бы, однако, довольно трудно, – прибавляет Фламмарион, – потому что редко можно найти пушку, хорошо калиброванную, и очень нелегко установить ее совершенно отвесно. Мерсен и Пти пытались это сделать в XVII в., но они даже и вовсе не нашли своего ядра после выстрела. Вариньон на заглавном листе своего сочинения «Новые соображения о тяготении» (1690 г.) поместил относящийся сюда рисунок (мы его воспроизводим на заставке). На нем два наблюдателя – монах и военный – стоят возле наведенной на зенит пушки и смотрят вверх, как бы следя за выпущенным ядром. На гравюре надпись (по-французски):
«Упадет ли обратно?» Монах – Мерсен, а военный – Пти. Этот опасный опыт они производили несколько раз и так как не оказались настолько меткими, чтобы ядро угодило им как раз в голову, то заключили, что ядро осталось навсегда в воздухе. Вариньон удивляется этому: «Ядро, висящее над нашими головами! Поистине удивительно!» При повторении опыта в Страсбурге ядро отыскалось в нескольких сотнях метров от пушки. Очевидно, орудие не было направлено строго вертикально.
Два решения задачи, как видим, находятся в резком разногласии. Один автор утверждает, что ядро упадет далеко к западу от места выстрела, другой – что оно должно упасть непременно в жерло орудия. Кто же прав?
Строго говоря, неверны оба решения, но фламмарионово гораздо ближе к истине. Ядро должно упасть к западу от пушки, однако не столь значительно, как утверждает первый автор, и не в самое жерло, как был убежден второй.
Задача, к сожалению, не может быть решена средствами элементарной математики. Поэтому ограничусь лишь тем, что приведу здесь окончательный результат.
Если обозначим начальную скорость ядра через v угловую скорость вращения земного шара через ш, а ускорение силы тяжести через g, то для расстояния х точки падения ядра к западу от пушки получаются выражения:
на экваторе
а на широте
Применяя формулу к задаче, поставленной первым автором, имеем
Подставив
Что же дает формула для случая, рассмотренного Фламмарионом? Выстрел произведен был не на экваторе, а близ Парижа на широте 48°. Начальную скорость ядра старинной пушки примем равной 300 м/с. Подставив во вторую формулу
получаем х = 18 м; ядро упадет на 18 м к западу от пушки (а не в самое жерло, как полагал французский астроном). При этом, конечно, нами не было принято во внимание возможное отклоняющее действие воздушных течений, способное заметно исказить этот результат.
В расчетах предыдущей статьи принималось, между прочим, в соображение одно обстоятельство, на которое мы не обратили до сих пор внимания читателя. Речь идет о том, что по мере удаления от Земли сила тяжести ослабевает. Тяжесть есть не что иное, как проявление всемирного тяготения, а сила взаимного притяжения двух тел при возрастании расстояния между ними быстро ослабевает. Согласно закону Ньютона сила притяжения убывает пропорционально квадрату расстояния; при этом расстояние следует считать от центра земного шара, потому что Земля притягивает все тела так, словно вся ее масса сосредоточена в центре. Поэтому сила притяжения на высоте 6400 км, т. е. в месте, удаленном от центра Земли на 2 земных радиуса, ослабевает в четыре раза по сравнению с силой притяжения на земной поверхности.
Для брошенного вверх артиллерийского снаряда это должно проявиться в том, что снаряд поднимется выше, чем в случае, если бы тяжесть с высотой не убывала. Для снаряда, выпущенного отвесно вверх со скоростью 8000 м в секунду, мы приняли, что он поднимется до высоты 6400 км. Между тем, если вычислить высоту поднятия этого снаряда по общеизвестной формуле, не учитывающей ослабления тяжести с высотой, получится высота вдвое меньшая. Сделаем это вычисление. В учебниках физики и механики приводится формула для вычисления высоты h поднятия тела, брошенного отвесно вверх со скоростью v при неизменном ускорении силы тяжести g:
Для случая v = 8000 м/с, g = 9,8 м/с2 получаем
Это почти вдвое ниже той высоты поднятия, которая указана в предыдущей статье. Разногласие обусловлено, как уже говорилось, тем, что, пользуясь формулами учебника, мы не приняли во внимание ослабления силы тяжести с высотой. Ясно, что если снаряд притягивается Землей слабее, он должен при данной скорости подняться выше.
Не следует спешить с заключением, что приводимые в учебниках формулы для вычисления высоты подъема тела, брошенного вверх, неверны. Они верны в тех границах, для которых предназначаются, и становятся неверными лишь тогда, когда вычислитель выходит с ними за указанные границы. Предназначаются же эти формулы для весьма небольших высот, где ослабление силы тяжести еще настолько незначительно, что им можно пренебречь. Так, для снаряда, брошенного вверх с начальной скоростью 300 м/с, ослабление силы тяжести сказывается весьма мало.