Занимательная астрономия
Шрифт:
Но вот интересный вопрос: ощутительно ли уменьшение силы тяжести для высот, с которыми имеют дело современная авиация и воздухоплавание? Заметно ли уже на этих высотах уменьшение веса тел? В 1936 г. летчик Владимир Коккинаки поднимал в своей машине различные грузы на большую высоту: 1/2 т на высоту 11 458 м, 1 т – на 12 100 м и 2 т на 11 295 м. Спрашивается: сохраняли ли эти грузы на указанных рекордных высотах свой первоначальный вес или теряли там заметную его часть? С первого взгляда может казаться, что подъем над земной поверхностью на десяток с лишним километров не может заметно уменьшить вес груза на такой большой планете, как Земля. Находясь у земной поверхности, груз отстоял от центра нашей планеты на 6400 км; поднятие на 12 км увеличивает это расстояние до 6412 км:
Выполним вычисление для одного случая: например, для подъема Коккинаки с грузом 2000 кг на 11 295 м. На этой высоте самолет находится дальше от центра земного шара, нежели при старте, в 6411,3/6400 раз.
Сила притяжения ослабевает здесь в
Следовательно, груз на указанной высоте должен весить
Если выполнить это вычисление (для чего удобно воспользоваться приемами приближенного расчета, [47] то выяснится, что груз в 2000 кг на рекордной высоте весил только 1993 кг; он стал на 7 кг легче – убыль веса довольно ощутительная. Килограммовая гиря на такой высоте вытягивала бы на пружинном безмене только 996,5 г; 3,5 г веса теряется.
47
Можно пользоваться приближенными равенствами
(1 + )2 = 1 + 2 и 1: (1 + ) = 1 – ,
где – весьма малая величина. Поэтому
Еще большую потерю веса должны были обнаружить наши стратонавты, достигшие высоты 22 км: 7 г на каждый килограмм.
Для рекордного подъема летчика Юмашева, поднявшего в 1936 г. груз в 5000 кг на высоту 8919 м, можно вычислением установить общую потерю веса грузом в 14 кг.
В 1959 г. летчик В.К. Коккинаки поднял на самолете ИЛ-18 на высоту 12 118 м груз в 20 т, в 1961 г. экипаж в составе И.М. Сухомлина, П.В. Солдатова, Н.Ф. Носова, В.И. Богданова на ТУ-114 поднял на 12 535 м груз в 30 035 кг. Пользуясь изложенным выше, читатель без труда сможет выполнить вычисление того, как велика была в этих случаях потеря веса.
Из трех законов планетных движений, с огромными усилиями вырванных у природы гением Кеплера, наименее понятен для многих, пожалуй, первый.
Закон этот утверждает, что планеты движутся по эллипсам. Почему же именно по эллипсам? Казалось бы, раз от Солнца во все стороны исходит одинаковая сила, ослабевающая с удалением в одинаковой мере, то планеты должны обходить Солнце по кругам, а никак не по вытянутым замкнутым путям, в которых Солнце к тому же не занимает центрального положения. Недоумения подобного рода исчерпывающе разъясняются при математическом рассмотрении вопроса. Но необходимыми познаниями из высшей математики владеют лишь немногие друзья неба. Постараемся же сделать ощутительной правильность законов Кеплера для тех наших читателей, которые могут распоряжаться только арсеналом элементарной математики.
Вооружившись циркулем, масштабной линейкой и большим листом бумаги, будем сами строить планетные пути и таким образом убедимся графически, что получаются они такими, какими должны быть согласно законам Кеплера.
Рис. 83. Сила притяжения планеты
Движение планет управляется силой тяготения. Займемся ею. Кружок в правой части рис. 83 изображает некое воображаемое солнце; влево от него – воображаемая планета. Расстояние между ними пусть будет 1 000 000 км, на чертеже оно представлено 5 см – в масштабе 200 000 км в 1 см.
Стрелка в 0,5 см длины изображает силу, с какой притягивается к Солнцу наша планета (рис. 83). Пусть теперь планета под действием этой силы приблизилась к Солнцу и находится от него на расстоянии всего 900 000 км, т.е. 4,5 см на нашем чертеже. Притяжение планеты к Солнцу теперь усилится по закону тяготения в (10/9)2, т. е. в 1,2 раза. Если раньше притяжение изображено было стрелкой в 1 единицу длины, то теперь мы должны придать стрелке размер 1,2 единицы. Когда расстояние уменьшится до 800 000 км, т. е. до 4 см на нашем чертеже, сила притяжения возрастет в (5/4)2 т. е. в 1,6 раза, и изобразится стрелкой в 1,6 единицы.
При дальнейшем приближении планеты к Солнцу до расстояния 700, 600, 500 тысяч км сила притяжения соответственно выразится стрелками в 2, в 2,8 и в 4 единицы длины.
Можно представить себе, что те же стрелки изображают не только притягивающие силы, но и перемещения, которые тело совершает под влиянием этих сил за единицу времени (в этом случае перемещения пропорциональны ускорениям, а стало быть, и силам). В дальнейших наших построениях мы будем пользоваться этим чертежом как готовым масштабом перемещений планеты.
Приступим теперь к построению пути планеты, обращающейся вокруг Солнца. Пусть в некоторый момент планета той же массы, что и сейчас рассмотренная, двигаясь в направлении WK со скоростью в 2 единицы длины, очутилась в точке К, находящейся на расстоянии 800 000 км от Солнца (рис. 84). На этом расстоянии от Солнца его притяжение будет действовать на планету с такой силой, что заставит ее в единицу времени переместиться по направлению к Солнцу на 1,6 единицы длины; за тот же промежуток времени планета продвинется в первоначальном направлении WK на 2 единицы. В результате она переместится по диагонали КР параллелограмма, построенного на перемещениях К1 и К2; эта диагональ равна 3 единицам длины (рис. 84).
Рис. 84. Как Солнце S искривляет путь планеты WKPR
Очутившись в точке Р, планета стремится двигаться дальше по направлению КР со скоростью 3 единиц. Но в то же время под действием притяжения Солнца на расстоянии SP =5,8 она должна в направлении SP пройти путь Р4 = 3. В результате она пройдет диагональ PR параллелограмма.
Дальше вести построение на том же чертеже мы не станем: масштаб слишком крупен. Понятно, что чем масштаб мельче, тем большую часть пути планеты удастся нам поместить на чертеже и тем меньше будет резкость углов нарушать сходство нашей схемы с истинным путем планеты. На рис. 85 дана та же картина в более мелком масштабе для воображаемого случая встречи Солнца с каким-нибудь небесным телом, по массе подобным вышеупомянутой планете. Здесь ясно видно, как Солнце отклоняет планету-пришельца от ее первоначального пути и заставляет следовать по кривой P—I–II–III–IV–V– VI. Углы построенного пути здесь не так резки, и отдельные положения планеты нетрудно уже соединить плавной кривой линией.