Чтение онлайн

на главную - закладки

Жанры

Жизнь на скорости света. От двойной спирали к рождению цифровой биологии
Шрифт:

Бактериальные клетки содержат около тысячи рибосомных комплексов, что позволяет им непрерывно синтезировать белок – как для замены деградировавших белковых молекул, так и для изготовления новых для дочерних клеток во время деления. Рибосому можно рассматривать под электронным микроскопом и видеть, как она изгибается и меняет форму в ходе работы. Проворот храповика {66} в глубине рибосомы – ключевой момент белкового синтеза. Весь синтез белка происходит чрезвычайно быстро: сборка цепочки длиной около ста аминокислот занимает секунды.

66

Frank, Joachim, and Rajendra Kumar Agrawal. “A ratchet-like inter-subunit reorganization of the ribosome during translocation.” Nature 406, стр. 318–322 (20 июля 2000).

Как и в случае двойной спирали, выявить подробности строения

рибосомы удалось с помощью рентгеновской кристаллографии. Сначала, однако, надо было заставить рибосомы кристаллизоваться – как кристаллизуется из раствора соль, когда выпаривается вода, – чтобы получить хорошо организованные кристаллы из миллионов рибосом, собранных в правильные структуры, которые можно изучать с помощью рентгеновских лучей. Ключевое открытие было сделано в 1980-х, когда Ада И. Йонат в Израиле в содружестве с Хайнцем-Гюнтером Виттманом в Берлине вырастили кристаллы из бактериальных рибосом, выделенных из микроорганизмов горячих источников и Мертвого моря. Секреты бактериальной рибосомы были раскрыты в 2005 году, а строение эукариотной – дрожжевой – рибосомы в высоком (трехангстремном) разрешении было опубликовано французской группой в декабре 2011 года [6] .

6

Один ангстрем – это примерно размер одного атома, одна десятимиллиардная метра.

Бактериальная рибосома состоит из двух крупных частей, называемых 30S и 50S субъединицами, которые расходятся и сходятся во время работы. Меньшая субъединица 30S – это часть рибосомы, которая считывает генетический код; в большей, 50S, собственно делаются белки. Субъединица 30S изучена с точностью до атома Йонат и независимо – Венкатраманом Рамакришнаном в Лаборатории молекулярной биологии Совета по медицинским исследованиям в Кембридже (Англия). Они, например, открыли «акцепторный участок», часть субъединицы 30S, который распознает и отслеживает точность соответствия между матричной и транспортной РНК. Детали молекулярного строения показывают, как рибосома выполняет спаривание двух первых букв кодона: молекулы тычутся, пока не «ощутят» желобок в двойной спирали из хорошо подогнанных РНК, чтобы гарантировать, что код прочитывается с высокой достоверностью. При проверке третьей буквы в тройке, соответствующей конкретной аминокислоте, этот механизм оказывается менее строгим из-за неоднозначности кода. Это совпадает с наблюдением, что конкретной тРНК – и аминокислоте на ней – может соответствовать не одна тройка нуклеотидов мРНК. Например, аминокислоту фенилаланин может кодировать как тройка УУУ, так и УУЦ.

Кроме того, Гарри Ф. Ноллер из Калифорнийского университета в Санта-Крусе (начинавший свое исследование, будучи очарован тем, как двигаются молекулы) в 1999 году опубликовал первые подробные изображения целой рибосомы, а потом, в 2001-м, дополнил их еще более тонкими деталями. Его работа показала, как формируются и распадаются молекулярные мостики во время этой операции {67} . Рибосомная машина содержит пружины сжатия и кручения, сделанные из РНК, чтобы держать субъединицы вместе, когда они смещаются и проворачиваются относительно друг друга. Ее малая субъединица, двигаясь вдоль матричной РНК, связывается с транспортной РНК, у которой на одном конце свободный антикодон, а на другом – аминокислота. Аминокислоты связываются вместе в белок большой субъединицей, которая тоже связывается с транспортной РНК. Таким образом рибосома может пропускать через свой центр по 15 груженных аминокислотами молекул РНК в секунду, координируя присоединение новых звеньев к растущему белку.

67

http://library.cshl.edu/oralhistory/interview/cshl/memories/harry-noller-and-ribosome/

На нарушении этих функций бактериальных рибосом основано действие многих антибиотиков. К счастью, хотя бактериальные и человеческие рибосомы похожи, они достаточно различаются, чтобы антибиотики могли связаться с бактериальными рибосомами и блокировать их эффективнее, чем человеческие. Все аминогликозиды – тетрациклин, хлорамфеникол, эритромицин – работают, убивая бактериальные клетки вмешательством в работу рибосом.

Йонат, Рамакришнан и Томас А. Стейтц поделили Нобелевскую премию 2009 года по химии за свои опыты по выяснению, как работает эта чудесная машина.

По мере развития геномики роль РНК выглядела все более важной. Согласно центральной догме, РНК – всего лишь посредник, обеспечивающий выполнение команд, зашифрованных в ДНК. В этой модели двойная спираль ДНК расплетается, и ее генетическая информация копируется на одноцепочечную мРНК. В свою очередь мРНК переносит ее от генома к рибосомам. Общепринятым также было мнение, что ДНК, не кодирующая белки, – это «мусорная» ДНК. Оба представления изменились в 1998 году, когда Эндрю Файр из Института

Карнеги в Вашингтоне, Крейг Кэмерон Мелло из Массачусетского университета и их коллеги опубликовали свидетельства того, что двухцепочечная РНК, снятая с некодирующей ДНК, может быть использована, чтобы отключать определенные гены, – что помогло объяснить некоторые озадачивающие явления, наблюдающиеся, например, у петуний {68} . Теперь стало ясно, что некоторые участки ДНК кодируют короткие молекулы РНК – молекулярные выключатели, играющие ключевую роль в том, как и насколько интенсивно используются гены. Вся информация в живой клетке в конечном счете заключена в определенном порядке нуклеотидов и аминокислот – в ДНК, РНК и белках. Поддержание этой чрезвычайной упорядоченности в геноме определяется священными законами термодинамики. Чтобы молекулярные машины могли обуздать тепловое движение, надо затратить химическую энергию. Клетки также требуют постоянных затрат этой энергии, чтобы образовывать ковалентные связи между молекулами, а также для выстраивания этих молекул в правильном порядке или последовательности. Посреди этой бури химического хаоса лежит относительно неколебимый набор инструкций, закодированных в ДНК.

68

Napoli, C., Lemieux, C., Jorgensen, R. (1990). “Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans.” Plant Cell 2 (4), стр. 279–289.

Обсуждая механизм кодирования наследственной информации, Шрёдингер имел причину говорить об «апериодическом кристалле»: он хотел подчеркнуть надежность хранения наследственной информации и использовал термин «кристалл», чтобы «объяснить постоянство гена». Совсем другое дело – белковые роботы, закодированные в наших генах, нестабильные и быстро ломающиеся. Продолжительность жизни любого белка лежит в интервале от секунд до дней. Им приходится выдерживать суету в клетке, где тепловая энергия заставляет молекулы биться друг о друга. Белки также могут складываться в неактивные и часто ядовитые скопления – на чем основаны некоторые хорошо известные болезни.

В каждый конкретный момент человеческая клетка обычно содержит тысячи разных белков, производя одни и избавляясь от других по мере надобности для поддержания своего благополучия. Недавние исследования ста белков в человеческих раковых клетках {69} показали, что период полураспада белков составляет от 45 минут до 22,5 часа. Сменяются и сами клетки. Каждый день в человеческом организме умирает 500 миллиардов кровяных клеток. Предполагается, что в ходе нормального развития любого органа умирает половина составляющих его клеток. У нас каждый день слущивается около 500 миллионов клеток кожи. В результате вы сбрасываете весь ваш внешний слой кожи каждые две-четыре недели. Пыль, которая накапливается у вас дома – это вы. Если вы не будете постоянно создавать новые белки и клетки, вы умрете. Жизнь – это процесс постоянного обновления. Без нашей ДНК, без программ жизни, клетки очень быстро гибнут, а с ними и весь организм.

69

Eden, E., N. Geva-Zatorsky, I. Issaeva, A. Cohen, E. Dekel, T. Danon, L. Cohen, A. Mayo, U. Alon. “Proteome half-life dynamics in living human cells.” Science, 11 февраля 2011, 331 (6018), стр. 764–768. Опубликовано онлайн 13 января 2011.

То, что линейные цепочки аминокислот, определенные генетическим текстом, складываются в характерные формы, чтобы выполнять свои особые функции, кажется на первый взгляд почти что чудом. Не все правила, определяющие складывание белков, уже поняты, что неудивительно, если учесть, что типичная цепочка из аминокислот (полипептид) имеет от миллионов до триллионов возможных конфигураций сложения. Чтобы вычислить все возможные конформации любого белка до предсказуемого термодинамически стабильного состояния, Лоуренсовская национальная лаборатория в Ливерморе объединила усилия с IBM, породив Blue Gene – линию суперкомпьютеров, которые могут выполнять около триллиона операций с плавающей запятой в секунду (то есть имеют мощность в один петафлопс).

Белок из сотни аминокислот может складываться множеством способов, так что количество различных структур составляет от 2100 до 10100 возможных конформаций. Чтобы испробовать все возможные конформации для каждого белка, понадобилось бы примерно 10 миллиардов лет. Но в линейную последовательность белкового текста встроены инструкции по складыванию, которые в свою очередь определены линейным генетическим текстом. В результате с помощью броуновского движения – постоянного движения молекул, вызываемого тепловой энергией, – эти процессы происходят очень быстро – за несколько тысячных секунды. Это обеспечивается тем, что правильно сложившийся белок имеет самую низкую возможную свободную энергию. И так же, как вода стекает в самую нижнюю точку, белок естественно принимает свою предпочтительную форму.

Поделиться:
Популярные книги

Идентификация

Уленгов Юрий
3. Гардемарин ее величества
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Идентификация

Господин следователь

Шалашов Евгений Васильевич
1. Господин следователь
Детективы:
исторические детективы
5.00
рейтинг книги
Господин следователь

Хозяйка дома в «Гиблых Пределах»

Нова Юлия
Любовные романы:
любовно-фантастические романы
5.75
рейтинг книги
Хозяйка дома в «Гиблых Пределах»

Купец III ранга

Вяч Павел
3. Купец
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Купец III ранга

Плохой парень, Купидон и я

Уильямс Хасти
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Плохой парень, Купидон и я

Третий. Том 3

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 3

Боги, пиво и дурак. Том 3

Горина Юлия Николаевна
3. Боги, пиво и дурак
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 3

Сломанная кукла

Рам Янка
5. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сломанная кукла

Жена на четверых

Кожина Ксения
Любовные романы:
любовно-фантастические романы
эро литература
5.60
рейтинг книги
Жена на четверых

Мастер Разума

Кронос Александр
1. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
6.20
рейтинг книги
Мастер Разума

Кодекс Крови. Книга IХ

Борзых М.
9. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга IХ

Адвокат Империи 3

Карелин Сергей Витальевич
3. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Адвокат Империи 3

Плеяда

Суконкин Алексей
Проза:
военная проза
русская классическая проза
5.00
рейтинг книги
Плеяда

Неудержимый. Книга VIII

Боярский Андрей
8. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
6.00
рейтинг книги
Неудержимый. Книга VIII