Чтение онлайн

на главную - закладки

Жанры

Жизнь на скорости света. От двойной спирали к рождению цифровой биологии
Шрифт:

Правильно сложенная конформация – та, которая гарантирует, что фермент может правильно работать, – включает переход от высокой степени энтропии и свободной энергии к термодинамически стабильному состоянию сниженной энтропии и свободной энергии. У белка, называемого виллин, этот процесс можно даже наблюдать благодаря компьютерной симуляции {70} . Растягивая действие реальной продолжительностью в шесть миллионных секунды до нескольких секунд, симуляция показывает, как тепловая энергия заставляет трястись исходную линейную цепочку из восьмидесяти семи аминокислот; линейный белок дергается туда-сюда и всего за шесть микросекунд проходит через множество разных конформаций на пути к окончательной форме. Представьте, сколько актов эволюционного отбора ушло на этот дерганый танец, учитывая, что аминокислотная последовательность белка определяет не только тип

его свертывания, но и его окончательную структуру – и, следовательно, его функцию.

70

Видео про складывание белка можно посмотреть на=sD6vyfTtE4U&feature=youtu.be. См. также http://www.ks.uiuc.edu/Research/folding/

Соревнование между «правильными» и потенциально вредными вариантами складывания белков довольно быстро привело к появлению «контроля качества» клеточных белков в виде другой группы специализированных молекулярных машин. Эти «молекулярные дуэньи» – шапероны – помогают белкам складываться и препятствуют образованию вредных агрегаций, а также разбирают агрегации, которые уже сформировались. Так, например, шапероны Hsp70 и Hsp100 разбирают агрегации, а Hsp60 состоит из разных белков, которые образуют что-то вроде бочонка с крышкой, чтобы, находясь внутри, несложившийся белок мог принять правильную форму. Неудивительно, что нарушение функционирования шаперонов лежит в основе многих нейродегенеративных заболеваний и форм рака.

Самая частая у европеоидов наследственная болезнь из тех, что определяются одним геном (в США она поражает одного новорожденного из 3500), – муковисцидоз, пример неправильно складывающегося, неверно ведущего себя белка. Он вызывается дефектом в гене, который отвечает за белок, называемый муковисцидозный трансмембранный регулятор проводимости (CFTR). Этот белок регулирует транспорт хлорид-иона сквозь клеточную мембрану; его изъяны приводят к разнообразным симптомам. Например, дисбаланс воды и соли у пациентов с муковисцидозом приводит к тому, что их легкие забивает липкая слизь, которая к тому же становится средой для роста болезнетворных бактерий. Повреждение легких из-за постоянных инфекций – главная причина смерти людей с этой болезнью. Не так давно ученые показали {71} , что по большей части в основе муковисцидоза лежит самая обычная мутация, мешающая отделению транспортного белка от одного из его шаперонов. В результате последние этапы нормального складывания не проходят, и активный белок не производится в должном количестве.

71

Sun, Fei, Zhibao Mi, Steven B. Condliffe, Carol A. Bertrand, Xiaoyan Gong, Xiaoli Lu, Ruilin Zhang, Joseph D. Latoche, Joseph M. Pilewski, Paul D. Robbins, and Raymond A. Frizzell. “Chaperone displacement from mutant cystic fibrosis transmembrane conductance regulator restores its function in human airway epithelia.” The FASEB Journal, Vol. 22, № 9, стр. 3255–3263. 2 сентября 2008.

Разрушение скоплений белка и белковых фрагментов жизненно важно, потому что эти субстанции могут образовывать пробки или бляшки, которые очень токсичны. Когда при забастовке мусорщиков прекращается вывоз отходов, на улицах растут горы зловонных отбросов, уличное движение замедляется, растет риск болезней, и город быстро выходит из строя. То же верно для клеток и органов. Болезнь Альцгеймера, дрожь паркинсоника и неотвратимое ухудшение при болезни Крёйцфельда-Якоба (человеческая форма коровьего бешенства) – все это происходит из-за накопления токсичных нерастворимых белковых агрегаций.

Некоторые белковые машины приспособлены для исправления ошибок при синтезе и сборке белков. Протеасомы отвечают за ликвидацию ненормальных белков путем протеолиза – реакции разрывания белковых связей, выполняемой ферментами протеиназами. Эта машина представляет собой цилиндрический комплекс, средняя часть которого состоит из четырех колец, подобно стопке бубликов, каждый бублик сделан из семи белковых молекул. Предназначенные для ликвидации в протеасоме белки-мишени помечаются молекулами убиквитина – маленького белка, присутствующего по всей клетке. Примерно тридцать лет назад этот базовый механизм избавления клетки от отходов был выявлен тремя учеными: Аароном Чехановером, Аврамом Хершко и Ирвином А. Роузом; в 2004 году они получили за это Нобелевскую премию.

Продолжительность жизни каждого белкового робота в клетке генетически запрограммирована. Действие этой программы

слегка отличается в разных ветвях жизни. Например, и E. coli, и дрожжевые клетки содержат фермент бета-галактозидазу, которая помогает расщеплять сложные сахара; однако период полураспада этого фермента сильно зависит от аминокислоты на конце белка (N– концевой аминокислоты). Когда на N– конце бета-галактозидазы стоит аргинин, лизин или триптофан, время полураспада белка составляет 120 секунд у E. coli и 180 секунд у дрожжей. Если на том же месте стоит серин, валин или метионин, время полураспада значительно возрастает – более 10 часов у E. coli и более 30 часов у дрожжей. Это называется N– концевым правилом {72} пути деградации белка.

72

Varshavsky, Alexander (1997). “The N-end rule pathway of protein degradation.” Genes to Cells 2 (1), стр. 13–28.

Нестабильность и недолговечность белков показывают, что и жизнь самих клеток была бы очень короткой, если бы клетки были просто мембранными мешочками – пузырьками – с белками, но без генетического материала. Все клетки умрут, если не смогут постоянно делать новые белки для замещения тех, что повреждены или неправильно сложены. Бактериальная клетка должна заново сделать все свои белки или умереть в течение часа или даже меньше. Это верно и для клеточных структур, таких как мембрана: круговорот фосфолипидных молекул и мембранных транспортеров таков, что, если они не будут постоянно пополняться новыми, мембрана лопнет и все содержимое клетки вытечет. При культивировании клеток в лаборатории применяют простой тест на жизнеспособность: определить, протекает ли их мембрана настолько, чтобы пропустить внутрь крупные частицы красителя. Если они могут проникнуть в клетки, те явно мертвы.

Другая белковая машинерия разлагает и разрушает старые или отказывающие клетки в многоклеточных организмах. Эта программируемая клеточная смерть – апоптоз – критически важная составляющая жизни и развития. Конечно, разборка чего-то настолько сложного, как клетка, требует чрезвычайно точной координации. Чтобы начать разрушение, апоптосома, белковый комплекс, прозванный «машина смерти о семи спицах», использует каскад каспаз – особой разновидности протеаз, т. е. ферментов, переваривающих белок. Эти каспазы ответственны за разборку главных клеточных белков, таких как белки цитоскелета, что приводит к характерным изменениям формы клеток, подвергающихся апоптозу. Другой признак апоптоза – это фрагментация ДНК. Каспазы играют важную роль в этом процессе, активируя фермент, расщепляющий ДНК, – ДНКазу. Кроме того, они ингибируют ферменты, ремонтирующие ДНК, разрушая структурные белки в ядре клетки.

Наши тела можно было бы представить как трехмерные белковые структуры, но постоянное обновление их компонентов делает эти структуры динамическими. Шрёдингер уловил это, когда говорил о «поразительном даре организма концентрировать в себе „поток порядка“, избегая тем самым распада в атомный хаос, – о „питье упорядоченности“ из подходящей окружающей среды».

И наконец, мы должны рассмотреть, что именно движет всей бешеной активностью и обновлением во всех и в каждой клетке. Если и был кандидат на жизненную силу для одушевления жизни, это то, что в 1827 году впервые заворожило Роберта Броуна (1773–1858), когда этот шотландский ботаник заинтересовался постоянными зигзагообразными движениями фрагментов пыльцевых зерен, феноменом, который назовут в его честь (если только вы не француз – они утверждают, что сходные наблюдения были изложены в 1828 году ботаником Адольфом-Теодором Броньяром, 1801–1876). Броуна озадачило то, что эти микроскопические движения происходили не от потоков жидкости, и не от испарения, и не от прочих очевидных причин. Сначала он подумал, что заметил «тайну жизни», но, обнаружив, что так же двигаются и минеральные крупицы, отмел это представление.

Первый существенный сдвиг в нашем нынешнем понимании того, чему стал свидетелем Броун, произошел более чем через 75 лет после его открытия, когда Альберт Эйнштейн (1879–1955) рассмотрел теоретически, как невидимые молекулы, из которых состоит вода, должны подпихивать плавающие в ней мелкие частицы. До статьи Эйнштейна 1905 года кое-кто из физиков (особенно Эрнст Мах, 1838–1916) все еще сомневался в физической реальности атомов и молекул. Модель Эйнштейна была в конце концов подтверждена точными экспериментами, проведенными в Париже Жаном Батистом Перреном (1870–1942), который в 1926 году был награжден за эту и другие работы Нобелевской премией.

Поделиться:
Популярные книги

Идентификация

Уленгов Юрий
3. Гардемарин ее величества
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Идентификация

Господин следователь

Шалашов Евгений Васильевич
1. Господин следователь
Детективы:
исторические детективы
5.00
рейтинг книги
Господин следователь

Хозяйка дома в «Гиблых Пределах»

Нова Юлия
Любовные романы:
любовно-фантастические романы
5.75
рейтинг книги
Хозяйка дома в «Гиблых Пределах»

Купец III ранга

Вяч Павел
3. Купец
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Купец III ранга

Плохой парень, Купидон и я

Уильямс Хасти
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Плохой парень, Купидон и я

Третий. Том 3

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 3

Боги, пиво и дурак. Том 3

Горина Юлия Николаевна
3. Боги, пиво и дурак
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 3

Сломанная кукла

Рам Янка
5. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сломанная кукла

Жена на четверых

Кожина Ксения
Любовные романы:
любовно-фантастические романы
эро литература
5.60
рейтинг книги
Жена на четверых

Мастер Разума

Кронос Александр
1. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
6.20
рейтинг книги
Мастер Разума

Кодекс Крови. Книга IХ

Борзых М.
9. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга IХ

Адвокат Империи 3

Карелин Сергей Витальевич
3. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Адвокат Империи 3

Плеяда

Суконкин Алексей
Проза:
военная проза
русская классическая проза
5.00
рейтинг книги
Плеяда

Неудержимый. Книга VIII

Боярский Андрей
8. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
6.00
рейтинг книги
Неудержимый. Книга VIII