Чтение онлайн

на главную - закладки

Жанры

Боги и человек (статьи)
Шрифт:

На базе этих знаний запишем в строчку результаты наших вычислений сперва для левой части нормального «колокола» распределения. Для нас это будут зарплаты и частоты их получения от 100 до 1400 рублей (со 2 по 8 колонки, последняя разбита на две. Частота — млн. человек каждой колонки к общему количеству получателей ее, то есть 40 млн.):

Таблица 6

2 3 4 5 6 7 8(1) 8(2)
100 150 300 500 700 900 1100 1300
0,00475 0,025 0,0625 0,0825 0,0875 0,0875 0,085 0,085

 

Похоже, что я приблизился к средней зарплате с минимального его конца, так как она

со 100 до 900 рублей хорошо шла согласно нормальному закону распределения. Две последние колонки надо корректировать, то есть в предпоследней чуть прибавить, а в последней столько же убавить, чтобы суммарная величина двух последних колонок сохранилась. Я же их, если помните, разделил пополам, теперь вижу, что неправильно. Над максимумом кривой кривизна уменьшается, значит можно для предпоследней колонки взять частоту такую же, то есть 0,0875, Тогда для последней колонки останется 0,0825. Перепишем:

Таблица 7

2 3 4 5 6 7 8(1) 8(2)
100 150 300 500 700 900 1100 1300
0,00475 0,025 0,0625 0,0825 0,0875 0,0875 0,0875 0,0825

 

Левая сторона «колокола» получилась хорошей, на 900 рублях получился максимум, то есть средняя зарплата, и пошло симметричное снижение ее согласно симметрии распределения: 1300 соответствует 500 рублям по симметричности. Замечу, что я пока не вышел из опубликованных Гонтмахером данных.

 А вот дальше начинаются сложности. Мне надо подряд написать 18 колонок вместо одной колонки 9, причем с одинаковой частотой 0,32 : 40 = 0,008, что в 10 раз меньше, чем в последней колонке предыдущей, так понравившейся мне таблицы. Этого сделать не удастся, даже если я попытаюсь несколько увеличить левые цифры за счет уменьшения правых цифр от середины этой 18–колоночной колонки – слишком много надо добавлять в самую левую часть. Давайте посмотрим, сколько мне надо добавить, чтобы получить приемлемую величину левой колонки из 18. Мне надо получить частоту в следующей колонке равную 0,0625 или около этого. Тогда я должен иметь 2,5 процента тех, кто получает 1500 рублей зарплаты, так как 2,5, деленное на 40, составит искомую частоту 0,0625. Но у меня же имеется всего 5,8 миллиона человек на все 18 колонок. Уменьшать же количество колонок от 18 я не имею права, интервалы все должны быть одинаковы. Я подозреваю тут начала вселенского мухлежа господина нашего Гонтмахера, но пока воздержусь от дальнейших претензий, ведь у меня по этой 9 колонке нет данных от упомянутого господина нашего.

Поэтому перейду к 10 колонке первой таблицы, тут все данные на виду и Гонтмахеру будет некуда деться. Она, как вы помните, должна разделиться на 28 подколонок с той же самой частотой 0,008, которая получена из цифр самого Гонтмахера, поэтому, повторяю, ему не отпереться. Для начала перепишу частоты из предыдущей таблицы:

Таблица 8

2 3 4 5 6 7 8(1) 8(2)
0,00475 0,025 0,0625 0,0825 0,0875 0,0875 0,0875 0,0825

 

Затем первую колонку представлю единицей, а все последующие колонки представлю соотнесенно с первой. Так будет наглядней сравнивать колонки:

Таблица 9

2 3 4 5 6 7 8(1) 8(2)
1 5,2 13 17,4 18,4 18,4 18,4 17,4

 

Теперь, чтобы представить всю генеральную совокупность зарплат по Гонтмахеру, мне надо добавить к этой таблице еще 18 + 28 + 8 = 54 колонки и все с одинаковой частотой 0,008 или в пересчете на частоту первой колонки 1,7. Перепишу для наглядности:

 

Таблица 10

2 3 4 5 6 7 8(1) 8(2) 9(1–18) 10(1–28) 11(1–8) Итого
 
1 5,2 13 17,4 18,4 18,4 18,4 17,4 1,7 1,7 1,7 62
колонки

 

Такого

идиотизма в теории вероятностей не может быть, тысячи раз доказано. Обращаю свое внимание на 9–ю 18–ти колоночную «колонку». Данных от Гонтмахера по ней у меня нет, но я и без его данных обойдусь, математика не даст соврать. Главное, в предыдущей таблице четко обозначился экстремум функции вероятностей (колонки с величиной частоты 18,4), при том, по данным самого Гонтмахера. Притом вправо от колонки с данными 17,4 экстремума вообще не может быть, по цифре 1,7 видно. Значит экстремум у меня на правильном месте.

Все 18 колонок 9–й колонки в принципе могут иметь большую величину, чем по 1,7, но тогда я имею право предположить два варианта:

— общее число трудящихся, получающих зарплату, больше 40 миллионов и вся прибавка к 40 миллионам придется на 18–ти колоночную 9–ю колонку;

— из фактических данных 9–й и предыдущих колонок трудящиеся были перенесены в 10 и 11 многоколоночные колонки с тем, чтобы средняя зарплата по стране увеличилась до той величины, которую нам Гонтмахер представил на словах и без доказательства.

Чтобы не раздражать напрасно Гонтмахера я увеличу общее количество трудяг до 45 миллионов, отправив их всех в 9–ю колонку, хотя это и будет чистой моей уступкой Гонтмахеру, чтоб не плакал, что его обидели. Я–то все равно уверен, что работяг в России больше 40 миллионов не найдется, которые бы попали в гонтмахерову статистику. Для этого мне придется пересчитать приведенные в таблице частоты, но я не гордый:

 

 Таблица 11

  2 3 4 5 6 7 8(1) 8(2) 9(1–18) 10(1–28) 11(1–8)
Старая 0,00475 0,025 0,0625 0,0825 0,0875 0,0875 0,0875 0,0825 0,008 0,008 0,008
частота
Старая 1 5,2 13,2 17,4 18,4 18,4 18,4 17,4 1,7 1,7 1,7
«удобная»
частота
Новое 0,19 1 2,5 3,3 3,5 3,5 3,5 3,3 0,6* 0,32 0,32
количество
рабочих
Новая 0,0042 0,022 0,056 0,073 0,078 0,078 0,078 0,073 0,013 0,007 0,007
частота
Новая 1 5,2 13,3 17,4 18,6 18,6 18,6 17,4 3,1 1,67 1,67
«удобная»
частота
Поделиться:
Популярные книги

Крещение огнем

Сапковский Анджей
5. Ведьмак
Фантастика:
фэнтези
9.40
рейтинг книги
Крещение огнем

Лучший из худших

Дашко Дмитрий
1. Лучший из худших
Фантастика:
фэнтези
попаданцы
5.25
рейтинг книги
Лучший из худших

Отморозки

Земляной Андрей Борисович
Фантастика:
научная фантастика
7.00
рейтинг книги
Отморозки

Девочка для Генерала. Книга первая

Кистяева Марина
1. Любовь сильных мира сего
Любовные романы:
остросюжетные любовные романы
эро литература
4.67
рейтинг книги
Девочка для Генерала. Книга первая

Кодекс Охотника. Книга VII

Винокуров Юрий
7. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
4.75
рейтинг книги
Кодекс Охотника. Книга VII

Кротовский, побойтесь бога

Парсиев Дмитрий
6. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Кротовский, побойтесь бога

Стеллар. Трибут

Прокофьев Роман Юрьевич
2. Стеллар
Фантастика:
боевая фантастика
рпг
8.75
рейтинг книги
Стеллар. Трибут

Темный Лекарь 5

Токсик Саша
5. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 5

На границе империй. Том 7. Часть 2

INDIGO
8. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
6.13
рейтинг книги
На границе империй. Том 7. Часть 2

Надуй щеки! Том 5

Вишневский Сергей Викторович
5. Чеболь за партой
Фантастика:
попаданцы
дорама
7.50
рейтинг книги
Надуй щеки! Том 5

Обгоняя время

Иванов Дмитрий
13. Девяностые
Фантастика:
попаданцы
5.00
рейтинг книги
Обгоняя время

Черный Маг Императора 10

Герда Александр
10. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Черный Маг Императора 10

Бастард

Майерс Александр
1. Династия
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард

Имя нам Легион. Том 8

Дорничев Дмитрий
8. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 8