Большая Советская Энциклопедия (БЕ)
Шрифт:
Разложения функций в Б. п. аналогичны разложениям многочленов на линейные множители; они замечательны тем, что выявляют все значения независимого переменного, при которых функция обращается в нуль.
Для сходимости Б. п. необходимо и достаточно, чтобы un ¹ 0 для всех номеров n, чтобы uN > 0, начиная с некоторого номера N, и чтобы сходился ряд
Т. о., исследование сходимости Б. п. эквивалентно
Лит.: Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, т. 2, М.— Л., 1966; Ильин В. А., Позняк Э. Г., Основы математического анализа, М., 1965.
Бесконечность в математике
Бесконе'чность в математике. «Математическое бесконечное заимствовано из действительности, хотя и бессознательным образом, и поэтому оно может быть объяснено только из действительности, а не из самого себя, не из математической абстракции» (Энгельс Ф., Анти-Дюринг, 1966, с. 396). Материальная основа математического бесконечного может быть понята только при условии, что оно рассматривается в диалектическом единстве с конечным. Каждая математическая теория связана обязательным для неё требованием внутренней формальной непротиворечивости. Поэтому возникает вопрос о том, как соединить это требование с существенно противоречивым характером действительности: Б. «Уничтожение этого противоречия было бы концом бесконечности» (там же, с. 47). Ответ на этот вопрос заключается в следующем. Когда в теории пределов рассматриваются бесконечные пределы lim an = yen, или в теории множеств — бесконечные мощности, то это не приводит к внутренним формальным противоречиям в указанных теориях лишь потому, что эти различные специальные виды математических Б. являются лишь крайне упрощёнными, схематизированными образами различных сторон Б. действительного мира.
Задачи настоящей статьи ограничиваются указанием на различные подходы к Б. в математике, освещаемые подробнее в других статьях.
1) Представление о бесконечно малых и бесконечно больших переменных величинах является одним из основных в математическом анализе. Предшествовавшая современному подходу к понятию бесконечно малой концепция, по которой конечные величины составлялись из бесконечно большого числа бесконечно малых «неделимых» (см. «Неделимых» метод ), трактовавшихся не как переменные, а как постоянные и меньшие любой конечной величины, может служить одним из примеров незаконного отрыва бесконечного от конечного: реальный смысл имеет только разложение конечных величин на неограниченно возрастающее число неограниченно убывающих слагаемых.
2) Совсем в другой логической обстановке Б. появляется в математике в виде «несобственных» бесконечно удалённых геометрических образов (см. Бесконечно удалённые элементы ). Здесь, например, бесконечно удалённая точка на прямой а рассматривается как особый постоянный объект, «присоединённый» к обычным конечным точкам. Однако неразрывная связь бесконечного с конечным обнаруживается и здесь, хотя бы при проектировании из центра, лежащего вне прямой, при котором бесконечно удалённой точке оказывается соответствующей прямая, проходящая через центр проектирования и параллельная основной прямой а.
Аналогичный характер имеет пополнение системы действительных чисел двумя «несобственными» числами +yen и -yen, соответствующее многим запросам анализа и теории функций действительного переменного. Можно подойти с такой же точки зрения и к пополнению ряда натуральных чисел 1, 2, 3,..., трансфинитными числами w, w + 1,..., 2w, 2w + 1,.... В связи с различием между переменными бесконечно малыми и бесконечно большими величинами, с одной стороны, и «несобственными» бесконечно большими числами, рассматриваемыми как постоянные, — с другой, возникли термины «потенциальная» Б. (для первых) и «актуальная» Б. (для вторых). В этом первоначальном понимании (о другом, современном понимании, см. ниже) спор между сторонниками актуальной и потенциальной Б. можно считать законченным. Бесконечно малые и бесконечно большие, лежащие в основе определения производной (как отношения бесконечно малых) и интеграла (как суммы бесконечно большого числа бесконечно малых) и примыкающих сюда концепций математического анализа, должны восприниматься как «потенциальные». Наряду с этим в надлежащей логической обстановке в математику вполне закономерно входят
В математике приходится иметь дело с двумя способами присоединения к числовой системе бесконечных «несобственных» элементов.
а) С проективной точки зрения на прямой находится одна «бесконечно удалённая точка». В обычной метрической системе координат этой точке естественно приписать абсциссу yen. Такое же присоединение к числовой системе одной Б. без знака употребляется в теории функций комплексного переменного. В элементарном анализе при изучении рациональных функций
где Р (х ) и Q (x ) — многочлены, в тех точках, где Q (x ) имеет нуль более высокого порядка, чем Р (х ), естественно положить f (x ) = yen. Для несобственного элемента yen устанавливаются такие правила действий:
yen + а = yen, если а конечно;
yen + yen не имеет смысла;
yen · а = yen, если а ¹ 0;
yen · 0 не имеет смысла.
Неравенства с участием yen не рассматриваются: бессмысленно спрашивать, больше или меньше yen, чем конечное а.
б) При изучении действительных функций действительного переменного систему действительных чисел дополняют двумя несобственными элементами +yen и -yen. Тогда можно положить, что -yen < а < +yen для любого конечного а, и сохранить основные свойства неравенств в расширенной числовой системе. Для +yen и -yen устанавливаются такие правила действий:
(+yen) + а = +yen, если а ¹ – yen;
(-yen) + а = -yen, если а ¹ +yen;
(+yen) + (-yen) лишено смысла;
(+yen) '·а = +yen, если а > 0;
(+yen) ' а = – yen, если а < 0;
(-yen) '·а = -yen, если a > 0;
(-yen) ' а = +yen, если а < 0;
(+yen) ' 0 и (yen) ' 0 лишены смысла.
В каждом математическом рассуждении следует отдавать себе отчёт, пользуемся мы в нём настоящей (не расширенной) числовой системой или расширенной, и в каком именно из двух указанных смыслов.
3) Основной интерес, но и основные трудности математического учения о Б. сосредоточиваются сейчас на вопросе о природе бесконечных множеств математических объектов. Следует, в частности, иметь в виду, что достигнутая ныне полная отчётливость и законченность теории бесконечно больших и бесконечно малых переменных величин заключается лишь в сведении всех трудностей этой теории к вопросу обоснования учения о числе, в которое существенно входит представление о Б. системы чисел. Утверждение о том, что у бесконечно мало, имеет смысл только при указании характера изменения у в зависимости от какого-либо другого переменного х; например, говорят, что у бесконечно мало при х ® а, если при любом e > 0 существует такое d > 0, что из |х– a | < d вытекает |у| < e. В самое это определение уже входит предположение, что функция y = f (x ) определена для бесконечного множества значений х (например, для всех действительных х, достаточно близких к а ). О бесконечных множествах в математике подробнее см. Множеств теория .