Большая Советская Энциклопедия (ЭЛ)
Шрифт:
Электро'нная промы'шленность, отрасль промышленности, производящая электронные приборы (полупроводниковые, электровакуумные, пьезокварцевые приборы, изделия квантовой, криогенной и оптоэлектроники, интегральной оптики), резисторы, конденсаторы, штепсельные разъёмы и другие радиокомпоненты, специальное технологическое оборудование и аппаратуру (см. также Электроника ; одна из отраслей, определяющих научно-технический прогресс.
Начало промышленного производства отдельных видов электронных приборов относится к 1920-м гг. Ещё в 20—30-е гг. СССР имел приоритет в области создания и промышленного выпуска новых типов электронных приборов: сверхвысокочастотных приборов, электроннолучевых трубок, фотоэлектронных умножителей и др. Бурное развитие Э. п. получила после 2-й мировой войны 1939—1945. Продукция Э. п. используется в различных областях науки и техники (космонавтика, радиофизика, кибернетика, вычислительная техника, связь, медицина и др.), при создании современных систем управления, радиотехнических устройств, приборов и средств автоматизации в промышленности, сельском хозяйстве, на транспорте и для оборонных
В 1961 был создан Государственный комитет Совета Министров СССР по электронной технике, а в 1965 — министерство электронной промышленности СССР.
Э. п. — отрасль, отличающаяся высоким уровнем концентрации производства, специализации и кооперирования, комплексностью развития. Крупные специализированные предприятия Э. п. выпускают широкую номенклатуру электронных изделий. Существенную роль в развитии специализации и кооперирования производства играют создание типовых параметрических рядов важнейших изделий электронной техники, разработка базовых прогрессивных конструкций и технологических процессов, комплексная стандартизация. С развитием современных направлений в электронике коренным образом изменилась технология изготовления электронных приборов. Традиционные приёмы обработки материалов вытесняются технологическими процессами, основанными на применении фотолитографии, электроннолучевой, плазменной и плазмохимической обработке, диффузии, ионной имплантации. Основная особенность применяемых в отрасли исходных материалов — их сверхвысокая чистота, т. к. наличие примесей определяет технические и эксплуатационные характеристики электронных приборов.
Э. п. характеризуется быстрым ростом объёмов производства, расширением номенклатуры полупроводниковых (особенно интегральных схем), квантовых, криоэлектронных приборов, а также приборов, основанных на акусто- и магнитоэлектронике; быстро расширяется производство микроЭВМ, цветных кинескопов, электронных калькуляторов, в том числе программируемых, видеомагнитофонов, электронных часов, стереосистем высшего класса, СВЧ-печей и др.
Э. п. развивается опережающими по сравнению с др. отраслями промышленности темпами. В 1966—75 объём производства увеличился в несколько раз, производительность труда — более чем в 4 раза. Основные пути совершенствования производства в Э. п. — комплексная механизация и автоматизация на основе создания высокопроизводительного оборудования и аппаратуры, автоматизированных линий, управляемых ЭВМ, и внедрения прогрессивных технологических процессов, базирующихся на передовых научно-технических достижениях.
Производство электронной техники получило большое развитие в зарубежных социалистических странах. Интегральные микросхемы, полупроводниковые приборы, резисторы, кинескопы и др. выпускаются предприятиями ВНР, ГДР, ПНР, СРР, ЧССР, СФРЮ.
Значительного уровня развития достигла Э. п. в капиталистических странах. Её отличает высокая степень монополизации и концентрации производства (особенно в США). Имеются также небольшие предприятия, специализирующиеся на выпуске отд. элементов приборов, измерительной аппаратуры и других электронных комплектующих устройств. Наиболее крупные фирмы США — «Фэрчайлд камера энд инструменте», «Нэшонал семикондакторс», «Рейдио корпорейшен оф Америка», «Интел», «Рокуэлл», «Тексас инструменте», «Моторола», «Мостек»; Японии — «Ниппон электрик компани», «Тосиба дэнки», «Мацусита дэнки»; ФРГ — «Сименс», «АЭГ — Телефункен»; Италии — «СГС — АТЕС»; Великобритании — «Плесси», «Инглиш электрик», «Маллард»; Франции — «Томпсон — ЦСФ», «Сескозэм» (см. также Электротехнические и электронные монополии ).
Лит.: Опыт организации и работы хозрасчетных объединений в промышленности. [Сб. статей], Л., 1970; Экономика электронной промышленности, М., 1976.
А. И. Шокин.
Электронная пушка
Электро'нная пу'шка, устройство для получения потоков (пучков) электронов в объёме, из которого удалён воздух (в вакууме). Электроны в Э. п. вылетают из катода и ускоряются электрическим полем (рис. 1 ). Испускание электронов из катода происходит главным образом в процессах термоэлектронной эмиссии , эмиссии из плазмы , автоэлектронной эмиссии (см. Туннельная эмиссия ) и фотоэлектронной эмиссии , формирование заданного распределения электронного пучка на выходе из Э. п. осуществляется подбором конфигурации и величины электрического и магнитного полей и является предметом электронной оптики (см. Электронная и ионная оптика ). Термин «Э. п.» применяют как к устройствам для формирования высокоинтенсивных электронных пучков (сильноточные Э. п.), так и к более простым совокупностям электродов для получения пучков малой интенсивности (используемых в клистронах , магнетронах , электроннолучевых приборах ); последние часто называются электронными прожекторами. Конструкции и параметры слаботочных Э. п. весьма разнообразны. Схема одной из них приведена на рис. 2 . Э. п. находят широкое применение в технике и научных исследованиях, в частности в телевизионных системах, электронных микроскопах, электроннооптических преобразователях, аппаратах для плавки и сварки металлов, возбуждения газовых лазеров и т. д. Токи электронных пучков в слаботочных Э. п. могут иметь значения в пределах от десятков мка до десятков а, а энергии электронов доходить до сотен кэв.
При малых токах и отсутствии разреженной плазмы между катодом и анодом движение электронов в сильноточной Э. п. с учётом релятивистских поправок подобно движению в слаботочной Э. п. Отличительная особенность Э. п. в режимах с большими токами состоит в сильном влиянии магнитного поля пучка на траектории электронов. Как показывает расчёт, при токе диода
Если на аноде есть слой плотной плазмы, то ионы ускоряются электрическим полем к катоду, а ток в диоде переносится и электронами, и ионами. Теория и расчёт, подтверждаемые экспериментами, предсказывают, что в результате взаимодействия магнитного поля с электронами их ток с увеличением R/d (в отличие от ионного) перестаёт нарастать. Это открывает возможность получения в сильноточных Э. п. ионных пучков с током ³ 106 а. Эффект подавления электронных токов на периферии диода магнитными полями, называется магнитной изоляцией, используется в вакуумных передающих линиях, соединяющих источник питания с диодом Э. п. и выдерживающих без пробоя напряжённость электрического поля lb 4x106в/см.
Сильноточные Э. п. используются для нагрева плазмы, коллективного ускорения заряженных частиц, получения тормозного излучения и потоков нейтронов, генерации СВЧ-колебаний и лазерного излучения, в исследованиях по физике твёрдого тела.
Лит.: Алямовский И. В., Электронные пучки и электронные пушки, М., 1966; Месяц Г. А., Генерирование мощных наносекундных импульсов, М., 1974; Смирнов В. П., Получение сильноточных пучков электронов, «Приборы и техника эксперимента», 1977, в. 2.
В. П. Смирнов.
Рис. 1. Схема электронной пушки: 1 — катод; 2 — модулятор; 3 — первый анод; 4 — второй анод; е — траектории электронов.
Рис. 3. Схема сильноточного диода: 1 — катод; 2 — слой катодной плазмы; 3 — типичная траектория электрона в диоде, имеющая спиралеобразную форму; 4 — типичная траектория иона в диоде; 5 — слой анодной плазмы; 6 — анод.
Рис. 2. Структурная схема осесимметричной электронной пушки, используемой в клистронах (показана в разрезе).