Большая Советская Энциклопедия (ЭЛ)
Шрифт:
Электронная спектроскопия
Электро'нная спектроскопи'я для химического анализа (ЭСХА), то же, что фотоэлектронная спектроскопия .
Электронная теория
Электро'нная тео'рия, классическая (неквантовая) теория электромагнитных процессов, в основе которой лежат представления о строении вещества из электрически заряженных частиц — электронов и атомных ядер (см. Лоренца — Максвелла уравнения ).
Электронная терапия
Электро'нная терапи'я, применение пучков ускоренных электронов с лечебными целями: один из видов лучевой терапии .
Электронная фотовспышка
Электро'нная фотовспы'шка, см. в ст. Лампа-вспышка .
Электронная фотография
Электро'нная фотогра'фия,
Лит.: Курс астрофизики и звездной астрономии, под ред. А. А. Михайлова, 3 изд., т. 1, М., 1973.
Электронная эмиссия
Электро'нная эми'ссия, испускание электронов поверхностью твёрдого тела или жидкости. Э. э. возникает в случаях, когда под влиянием внешних воздействий часть электронов тела приобретает энергию, достаточную для преодоления потенциального барьера на границе тела, или если под действием электрического поля поверхностный потенциальный барьер становится прозрачным для части электронов, обладающих внутри тела наибольшими энергиями. Э. э. может возникать при нагревании тел (термоэлектронная эмиссия ), при бомбардировке электронами (вторичная электронная эмиссия ), ионами (ионно-электронная эмиссия ) или фотонами (фотоэлектронная эмиссия ). В определённых условиях (например, при пропускании тока через полупроводник с высокой подвижностью электронов или при приложении к нему сильного импульса электрического поля) электроны проводимости могут «нагреваться» значительно сильнее, чем кристаллическая решётка, и часть из них может покинуть тело (эмиссия горячих электронов).
Для наблюдения Э. э. необходимо создать у поверхности тела (эмиттера) внешне ускоряющее электроны электрическое поле, которое «отсасывает» электроны от поверхности эмиттера. Если это поле достаточно велико (³ 102в/см ), то оно уменьшает высоту потенциального барьера на границе тела и соответственно работу выхода (Шотки эффект ), в результате чего Э. э. возрастает. В сильных электрических полях (~107 в/см ) поверхностный потенциальный барьер становится очень тонким и возникает туннельное «просачивание» электронов сквозь него (туннельная эмиссия ), иногда называемое также автоэлектронной эмиссией. В результате одновременного воздействия 2 или более факторов может возникать термоавто- или фотоавтоэлектронная эмиссия. В очень сильных импульсных электрических полях (~ 5x107в/см ) туннельная эмиссия приводит к быстрому разрушению (взрыву) микроострий на поверхности эмиттера и к образованию вблизи поверхности плотной плазмы . Взаимодействие этой плазмы с поверхностью эмиттера вызывает резкое увеличение тока Э. э. до 106 а при длительности импульсов тока в несколько десятков нсек (взрывная эмиссия). При каждом импульсе тока происходит перенос микроколичеств (~ 10– 11г ) вещества эмиттера на анод.
Лит.: Добрецов Л. Н., Гомоюнова М. В., Эмиссионная электроника, М., 1966; Бугаев С. П., Воронцов-Вельяминов П. Н., Искольдский А. М., Месяц С, А., Проскуровский Д. И., Фурсей Г. Н., Явление взрывной электронной эмиссии, в сборнике: Открытия в СССР 1976 года, М., 1977.
Т. М. Лифшиц.
Электронноакустический преобразователь
Электронноакусти'ческий преобразова'тель, устройство для преобразования акустических сигналов в электрические. Э. п. представляет собой электроннолучевой прибор с экраном в виде металлического диска с отверстиями, в которые впаяны тонкие остеклованные (для изоляции от диска) проволочки. Внутренняя поверхность диска отшлифована и покрыта слоем диэлектрика с большим коэффициентом вторичной эмиссии. С внешней стороны диска проволочки электрически соединены с элементами матрицы из пьезоэлектрического материала. Под действием акустической волны на элементах матрицы возникают электрические потенциалы, которые по проволочкам передаются на внутреннюю поверхность диска (экрана), при этом распределение зарядов на слое диэлектрика соответствует распределению амплитуд звукового давления в плоскости матрицы. Электронный луч, обегая поочерёдно все участки экрана (так же, как в передающей телевизионной трубке), «считывает» электронное изображение акустического поля и преобразует его в последовательность электрических сигналов.
Э. п. используют в устройствах ультразвуковой дефектоскопии и подводного звуковидения, в приборах медицинской диагностики, как быстродействующие электронные коммутаторы и т. д.
Лит.: Грасюк Д. С. [и др.], Ультразвуковой интроскоп с новым электронно-акустическим преобразователем «У-55», «Акустический журнал», 1965, т. 11, в. 4; Прохоров В. Г., Семенов С. П., О построении систем акустической голографии, в сборнике: Современное состояние и перспективы развития голографии, Л., 1974.
В. Д. Свет.
Электронно-дырочная
Электро'нно-ды'рочная жи'дкость, конденсированное состояние неравновесной электронно-дырочной плазмы в полупроводниках (см. Плазма твёрдых тел ). Э.-д. ж. образуется, когда концентрация электронов и дырок (свободных или связанных в экситоны ) превышает некоторое, зависящее от температуры критическое значение nkp. Эта концентрация легко достигается с помощью инжекции носителей, освещения полупроводника и т. п. При достижении nkp система неравновесных носителей тока претерпевает фазовый переход, подобный переходу газ — жидкость, в результате которого она расслаивается на две фазы: капли относительно плотной Э.-д. ж., окруженные газом экситонов, и свободных носителей. При этом плотность и кристаллическая структура полупроводника практически не затрагиваются. В отличие от обычных жидкостей, в Э.-д. ж. отсутствуют тяжёлые частицы (ионы, атомные ядра). Поэтому Э.-д. ж. обладает сильно выраженными квантовыми свойствами: она не может кристаллизоваться, а остаётся жидкостью вплоть до самых низких температур (см. Квантовая жидкость ); она не может быть жидкостью молекулярного типа, т. е. состоять из экситонов или экситонных молекул, а состоит из квазисвободных электронов и дырок, т. е. подобна жидкому металлу .
Кулоновское взаимодействие, связывающее частицы в Э.-д. ж., ослаблено диэлектрической проницаемостью кристалла. Поэтому по сравнению с обычными жидкостями энергии связи частиц E и их концентрации по в Э.-д. ж. весьма малы (E ~ 10– 2 — 10– 1эв, п ~ 1017 — 1019см– 3 ). Область температур Т, при которых возможно существование Э.-д. ж., по порядку величины определяется соотношением: Т ³ (0,1 E /к ) ~ 10—100 К (к — Больцмана постоянная ).
Диаметр капель обычно ~ 1—10 мкм, однако удаётся наблюдать капли с диаметрами до 1 мм. Капли можно ускорять до скоростей порядка скорости звука в кристалле, т. е. это подвижные области высокой металлической проводимости внутри практически не проводящего (при низких Т) кристалла. Э.-д. ж. можно рассматривать как устойчивые макроскопические «сгустки» введённой в кристалл энергии возбуждения. Эта энергия выделяется в процессе рекомбинации электронов и дырок частично в виде электромагнитного излучения (излучательные переходы), так что Э.-д. ж. являются интенсивными источниками света. Э.-д. ж. наиболее полно изучена в Ge и Si, однако есть указания на её существование и в других полупроводниках.
Лит. см. при ст. Экситон .
Л. В. Келдыш.
Электронно-дырочный переход
Электро'нно-ды'рочный перехо'д (p —n– переход), область полупроводника, в которой имеет место пространственное изменение типа проводимости (от электронной n к дырочной p ). Поскольку в р– области Э.-д. п. концентрация дырок гораздо выше, чем в n– области, дырки из n– области стремятся диффундировать в электронную область. Электроны диффундируют в р– область. Однако после ухода дырок в n– области остаются отрицательно заряженные акцепторные атомы, а после ухода электронов в n– области — положительно заряженные донорные атомы. Т. к. акцепторные и донорные атомы неподвижны, то в области Э.-л. п. образуется двойной слой пространственного заряда — отрицательные заряды в р– области и положительные заряды в n– области (рис. 1 ). Возникающее при этом контактное электрическое поле по величине и направлению таково, что оно противодействует диффузии свободных носителей тока через Э.-д. п.; в условиях теплового равновесия при отсутствии внешнего электрического напряжения полный ток через Э.-д. п. равен нулю. Т. о., в Э.-д. п. существует динамическое равновесие, при котором небольшой ток, создаваемый неосновными носителями (электронами в р– области и дырками в n– области), течёт к Э.-д. п. и проходит через него под действием контактного поля, а равный по величине ток, создаваемый диффузией основных носителей (электронами в n– области и дырками в р– области), протекает через Э.-д. п. в обратном направлении. При этом основным носителям приходится преодолевать контактное поле (потенциальный барьер ). Разность потенциалов, возникающая между p- и n– областями из-за наличия контактного поля (контактная разность потенциалов или высота потенциального барьера), обычно составляет десятые доли вольта.