Чтение онлайн

на главную - закладки

Жанры

Большая Советская Энциклопедия (ЭЛ)
Шрифт:

Приведённое классическое рассмотрение удобно для анализа релаксационных процессов (см. ниже). Для описания же спектров ЭПР необходим квантовый подход. Поглощение электромагнитной энергии происходит в том случае, когда квант электромагнитной энергии hv (h — Планка постоянная ) равен разности энергий DE между магнитными (зеемановскими) подуровнями, образующимися в результате расщепления уровней энергии парамагнитной частицы в постоянном магнитном поле Н (см. Зеемана эффект ).

Если магнитный момент парамагнитной частицы обусловлен только спином электрона S = 1 /2 , то m = gs bMs , где gs = 2,0023 —

фактор спектроскопического расщепления для свободного электрона, b — магнетон Бора, a Ms магнитное квантовое число , принимающее значения ±1 /2 . Во внешнем статическом магнитном поле Н эти электроны парамагнитных частиц разбиваются на 2 группы с энергиями — gs bH/ 2 и + gs bH/ 2. Между этими группами уровней возможны квантовые переходы, которые возбуждаются полем H1 ^H . Условие резонанса записывается в виде:

. (2)

Это условие эквивалентно условию резонанса (1), т. к. g = 2pgs b/h. Распределение электронов между двумя уровнями энергии описывается формулой Больцмана:

(3)

где N1 и N2 числа электронов, находящихся на верхнем и нижнем уровнях, Т— температура, k — Больцмана постоянная . Под действием электромагнитного поля h1 происходит переход электронов с одного уровня на другой, сопровождающийся изменением направления спина.

При переходе с нижнего уровня на верхний электромагнитная энергия поглощается, а при обратном переходе излучается. Вероятность этих процессов одинакова, но т. к. в условиях равновесия населённость нижнего уровня больше, чем верхнего, происходит поглощение энергии (рис. 2 ). Если каким-либо искусственным образом создать инверсию населённостей , то под действием электромагнитного поля система будет излучать энергию. Этот принцип положен в основу работы парамагнитных квантовых усилителей .

Обычно парамагнетизм частиц обусловлен суммарным вкладом орбитального и спинового моментов нескольких электронов; к тому же в кристаллах на эти электроны действуют сильные электрические поля окружающих ионов (лигандов). Поэтому описание строения спектров ЭПР в этом случае — сложная задача. Для расчёта спектров используют полуэмпирический метод, предложенный А. Абрахамом (Франция) и Х. М. Л. Прайсом (США) в 1951, называемый методом спинового гамильтониана. При ЭПР происходят переходы между близколежащими уровнями. Расчёт уровней энергии в магнитном поле упрощается, если ввести эффективный спин S , абсолютная величина которого определяется числом n близколежащих уровней: n =2S + 1. Энергии вычисляют в предположении, что магнитный момент частицы обусловлен величиной S . Тогда энергия уровня E =g bMsH, где Ms принимает (2S + 1) значений: S, (S — 1),...... — (S — 1), — S . Величина g– фактора может существенно отличаться от величины g– фактора свободного электрона gs . Между уровнями, отличающимися по Ms на величину DMs = ± 1, возможны дипольные переходы, и условия резонанса по-прежнему будут описываться формулой (2) с gs = g. Если S > 1 /2 ,

то уровни энергии с разными |Ms | могут расщепиться при Н = 0, и в спектре ЭПР появляется несколько линий поглощения (тонкая структура спектра ЭПР, рис. 3 , а).

Взаимодействие электронов с магнитным моментом ядра парамагнитного атома приводит к появлению в спектре ЭПР сверхтонкой структуры. Если спин ядра I , то количество сверхтонких компонент равно 2I + 1, что соответствует условию перехода DMI = 0, где MI ядерное магнитное квантовое число (рис. 3 , б). Взаимодействие электронов парамагнитной частицы с магнитными моментами ядер окружающих ионов также расщепляет линию ЭПР (суперсверхтонкая структура, рис. 4 ) Изучение сверхтонкого и суперсверхтонкого взаимодействия даёт возможность определить места нахождения неспаренных электронов.

Парамагнитная релаксация. Ширина линий. Релаксационные процессы, восстанавливающие равновесие в системе электронных спинов, нарушенное в результате поглощения электромагнитной энергии, характеризуются временами релаксации T1 и T2. Ширина линий поглощения Dv связана с временами релаксации соотношением:

Dn = (1/ T1 ) + (1/ T2 ). (4)

В классическом рассмотрении времена T1 и T2 называются продольным и поперечным временами релаксации, т. к. они определяют время восстановления равновесного положения продольной и поперечной компонент вектора намагниченности . Т. к. восстановление равновесной величины поперечной компоненты намагниченности происходит благодаря взаимодействию между магнитными моментами парамагнитных частиц (спин-спиновое взаимодействие ), то T1 называется также временем спин-спиновой релаксации. Восстановление продольной компоненты обусловлено взаимодействием магнитных моментов парамагнитных частиц с колебаниями кристаллической решётки (спин-решёточное взаимодействие). Поэтому время T1 называется также временем спин-решёточной релаксации. Оно характеризует скорость восстановления равновесия между спиновой системой и колебаниями решетки.

Спин-спиновое взаимодействие состоит из двух составляющих: диполь-дипольного и обменного взаимодействий . Локальное поле, действующее на парамагнитную частицу, складывается из внешнего поля Н и поля НД, создаваемого диполями (магнитными моментами) соседних парамагнитных частиц. Поле НД изменяется от точки к точке, т. к. изменяется набор соседних парамагнитных частиц и направление их магнитных моментов, что приводит к уширению линии ЭПР. Обменное взаимодействие, наоборот, стремится упорядочить направления спинов и, следовательно, уменьшает «хаотичность» ориентаций магнитных моментов парамагнитных частиц. Поэтому оно приводит к «обменному сужению» линии ЭПР.

Движения ядер парамагнитных центров создают флуктуации электрического поля, влияющие на орбитальное движение электронов, что, в свою очередь, приводит к появлению флуктуаций локального магнитного поля, а следовательно, и к уширению линий ЭПР. Величина спин-решёточного взаимодействия уменьшается при понижении температуры, т. к. уменьшается амплитуда тепловых колебаний решётки ядер. Величина спин-спинового взаимодействия от температуры практически не зависит. Поэтому для ионов переходных металлов с большим вкладом орбитального момента линию ЭПР удаётся наблюдать только при низких температурах. Спектры ЭПР наблюдают при достаточно малой мощности переменного электромагнитного поля (10– 2 —10– 3вт ), когда установившееся состояние мало отличается от равновесного. Если мощность велика и релаксационные процессы не в состоянии восстановить равновесное распределение, то населённости уровней выравниваются и наступает насыщение, обнаруживаемое по уменьшению поглощения (см. Квантовая электроника ). Эффект насыщения уровней используется для измерения времён парамагнитной релаксации.

Поделиться:
Популярные книги

(Не)зачёт, Дарья Сергеевна!

Рам Янка
8. Самбисты
Любовные романы:
современные любовные романы
5.00
рейтинг книги
(Не)зачёт, Дарья Сергеевна!

На границе империй. Том 10. Часть 4

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 4

Черный Маг Императора 12

Герда Александр
12. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Черный Маг Императора 12

Воевода

Ланцов Михаил Алексеевич
5. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Воевода

Аргумент барона Бронина 3

Ковальчук Олег Валентинович
3. Аргумент барона Бронина
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Аргумент барона Бронина 3

Красноармеец

Поселягин Владимир Геннадьевич
1. Красноармеец
Фантастика:
боевая фантастика
попаданцы
4.60
рейтинг книги
Красноармеец

Возвышение Меркурия

Кронос Александр
1. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия

Выстрел на Большой Морской

Свечин Николай
4. Сыщик Его Величества
Детективы:
исторические детективы
полицейские детективы
8.64
рейтинг книги
Выстрел на Большой Морской

Мастер 3

Чащин Валерий
3. Мастер
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 3

Адвокат вольного города 5

Кулабухов Тимофей
5. Адвокат
Фантастика:
городское фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Адвокат вольного города 5

Измена. Возвращение любви!

Леманн Анастасия
3. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Возвращение любви!

Отморозки

Земляной Андрей Борисович
Фантастика:
научная фантастика
7.00
рейтинг книги
Отморозки

Невеста напрокат

Завгородняя Анна Александровна
Любовные романы:
любовно-фантастические романы
6.20
рейтинг книги
Невеста напрокат

Запечатанный во тьме. Том 1. Тысячи лет кача

NikL
1. Хроники Арнея
Фантастика:
уся
эпическая фантастика
фэнтези
5.00
рейтинг книги
Запечатанный во тьме. Том 1. Тысячи лет кача