Большая Советская Энциклопедия (МА)
Шрифт:
Серьёзные новые математические проблемы выдвигают перед М. в 17 веке навигация (необходимость усовершенствования часового дела и создания точных хронометров), а также картография, баллистика, гидравлика. Авторы 17 века понимают и любят подчёркивать большое практическое значение М. Опираясь на свою тесную связь с естествознанием, М. 17 века смогла подняться на новый этап развития. Новые понятия, не укладывающиеся в старые формально-логические категории М., получали своё оправдание в соответствии реальным соотношениям действительного мира. Так, например, реальность понятия производной вытекала из реальности понятия скорости в механике; поэтому вопрос заключался не в том, можно ли логически оправдать это понятие, а лишь в том, как это сделать.
Математические достижения 17 века начинаются открытием логарифмов (Дж. Непер , опубликовавший свои таблицы в 1614). В 1637 Р. Декарт публикует свою «Геометрию», содержащую основы координатного метода в геометрии, классификацию кривых с подразделением их на алгебраические и трансцендентные. В тесной связи с возможностью представить корни уравнения Р(х) = 0 точками пересечения кривой y = Р(х) с осью абсцисс в алгебре исследуются действительные
Параллельно развивается учение о бесконечных рядах . Свойства простейших рядов, начиная с геометрической прогрессии, изучил Дж. Валлис (1685). Н. Меркатор (1668) получил разложение In(1 + x ) в степенной ряд. И. Ньютон нашёл (1665—69) формулу бинома для любого показателя, степенные ряды функций ex , sinx , arc sinx . В дальнейшем развитии учения о бесконечных рядах приняли участие почти все математики 17 века (Дж. Валлис, Х. Гюйгенс, Г. Лейбниц, Я. Бернулли и другие).
С созданием координатного метода и распространением представлений о направленных механических величинах (скорости, ускорения) понятие отрицательного числа приобрело полную наглядность и ясность. Наоборот, комплексные числа, по-прежнему оставаясь побочным продуктом алгебраического аппарата, продолжали быть по преимуществу лишь предметом бесплодных споров.
К последней трети 17 века относится открытие дифференциального и интегрального исчисления в собственном смысле слова. В отношении публикации приоритет этого открытия принадлежит Г. Лейбницу, давшему развёрнутое изложение основных идей нового исчисления в статьях, опубликованных в 1682—86. В отношении же времени фактического получения основных результатов имеются все основания считать приоритет принадлежащим И. Ньютону, который к основным идеям дифференциального и интегрального исчисления пришёл в течение 1665—66. «Анализ с помощью уравнений» И. Ньютона в 1669 был передан им в рукописи английским математикам И. Барроу и Дж. Коллинзу и получил широкую известность среди английских математиков. «Метод флюксий» — сочинение, в котором И. Ньютон дал вполне законченное систематическое изложение своей теории, — был написан в 1670—71 (издан в 1736). Г. Лейбниц же начал свои исследования по анализу бесконечно малых лишь в 1673. И. Ньютон и Г. Лейбниц впервые в общем виде рассмотрели основные для нового исчисления операции дифференцирования и интегрирования функций, установили связь между этими операциями (так называемая формула Ньютона — Лейбница) и разработали для них общий единообразный алгоритм. Подход к делу у И. Ньютона и Г. Лейбница, однако, различен. Для И. Ньютона исходными понятиями являются понятия «флюенты» (переменной величины) и её «флюксий» (скорости её изменения). Прямой задаче нахождения флюксий и соотношений между флюксиями по заданным флюентам (дифференцирование и составление дифференциальных уравнений) И. Ньютон противопоставлял обратную задачу нахождения флюент по заданным соотношениям между флюксиями, то есть сразу общую задачу интегрирования дифференциальных уравнений; задача нахождения первообразной появляется здесь как частный случай интегрирования дифференциального уравнения
dy/dx = f(x) .
Такая точка зрения была вполне естественна для И. Ньютона как создателя математического естествознания: его исчисление флюксий являлось просто отражением той идеи, что элементарные законы природы выражаются дифференциальными уравнениями, а предсказание хода описываемых этими уравнениями процессов требует их интегрирования (см. Флюксий исчисление ). Для Г. Лейбница в центре внимания находился вопрос о переходе от алгебры конечного к алгебре бесконечно малых; интеграл воспринимался прежде всего как сумма бесконечно большого числа бесконечно малых, а основным понятием дифференциального исчисления являлись дифференциалы — бесконечно малые приращения переменных величин (наоборот, И. Ньютон, вводя соответствующее понятие «момента», стремился в более поздних работах от него освободиться). С публикации работ Г. Лейбница в континентальной Европе начался период интенсивной коллективной работы над дифференциальным и интегральным исчислением, интегрированием дифференциальных уравнений и геометрическими приложениями анализа, в которой принимали участие, кроме самого Г. Лейбница, Я. Бернулли, И. Бернулли , Г. Лопиталь и другие. Здесь создаётся современный стиль математической работы, при котором полученные результаты немедленно публикуются в журнальных статьях и уже очень скоро после опубликования используются в исследованиях других учёных.
Кроме аналитической геометрии, развивается в тесной связи с алгеброй и анализом дифференциальная геометрия , в 17 веке закладываются основы дальнейшего развития чистой геометрии главным образом в направлении создания основных понятий проективной геометрии. Из других открытий 17 века следует отметить исследования по теории чисел (Б. Паскаль , П. Ферма); разработку основных понятий комбинаторики (П. Ферма, Б. Паскаль, Г. Лейбниц); первые работы по теории вероятностей (П. Ферма, Б. Паскаль), увенчавшиеся в конце века результатом принципиального значения — открытием простейшей формы больших чисел закона (Я. Бернулли, опубликован в 1713). Необходимо указать ещё на построение Б. Паскалем (1641) и Г. Лейбницем (1673—74) первых счётных машин, оставшееся надолго, впрочем, без практических последствий.
18 век. В начале 18 века общий стиль математических исследований постепенно меняется. Успех 17 века, обусловленный в основном новизной метода, создавался главным образом смелостью и глубиной общих идей, что сближало М. с философией. К началу 18 века развитие новых областей М., созданных в 17 веке, достигло того уровня, при котором дальнейшее продвижение
Если виднейшие математики 17 века очень часто были в то же время философами или физиками-экспериментаторами, то в 18 веке научная работа математика становится самостоятельной профессией. Математики 18 века — это люди из разных кругов общества, рано выделившиеся своими математическими способностями, с быстро развивающейся академической карьерой (Л. Эйлер, происходя из пасторской семьи в Базеле, в возрасте 20 лет был приглашен адъюнктом в Петербургскую академию наук, 23 лет становится там же профессором, 39 лет — председателем физико-математического класса Берлинской академии наук; Ж. Лагранж — сын французского чиновника, 19 лет — профессор в Турине, 30 лет — председатель физико-математического класса Берлинской академии наук; П. Лаплас — сын французского крестьянина, 22 лет — профессор военной школы в Париже, 36 лет — член Парижской академии наук). При этом, однако, математическое естествознание (механика, математическая физика) и технические применения М. остаются в сфере деятельности математиков. Л. Эйлер занимается вопросами кораблестроения и оптики, Ж. Лагранж создаёт основы аналитической механики, П. Лаплас, считавший себя в основном математиком, также является крупнейшим астрономом и физиком своего времени и так далее.
М. 18 века обогатилась многими выдающимися результатами. Благодаря работам Л. Эйлера, Ж. Лагранжа и А. Лежандра теория чисел приобретает характер систематической науки. Ж. Лагранж дал (1769, опубликовано в 1771) общее решение неопределённых уравнений второй степени. Л. Эйлер установил (1772, опубликован в 1783) закон взаимности для квадратичных вычетов . Он же привлек (1737, 1748, 1749) для изучения простых чисел дзета-функцию , чем положил начало аналитической теории чисел.
При помощи разложений в непрерывные дроби Л. Эйлер доказал (1737, опубликовано в 1744) иррациональность е и e2 , а И. Ламберт (1766, опубликовано в 1768) — иррациональность p. В алгебре Г. Крамер (1750) ввёл для решения систем линейных уравнений определители. Л. Эйлер рассматривал как эмпирически установленный факт существование у каждого алгебраического уравнения корня вида
Солнце мертвых
Фантастика:
ужасы и мистика
рейтинг книги
Возвышение Меркурия. Книга 2
2. Меркурий
Фантастика:
фэнтези
рейтинг книги
Поцелуй Валькирии - 3. Раскрытие Тайн
Любовные романы:
любовно-фантастические романы
эро литература
рейтинг книги
