Большая Советская Энциклопедия (МА)
Шрифт:
В области геометрии Л. Эйлер привёл к завершению систему элементарной аналитической геометрии. В работах Л. Эйлера, А. Клеро , Г. Монжа и Ж. Менье были заложены основы дифференциальной геометрии пространственных кривых и поверхностей. И. Ламберт развил теорию перспективы, а Г. Монж придал окончательную форму начертательной геометрии .
Из приведённого обзора видно, что М. 18 века, основываясь на идеях 17 века, по размаху работы далеко превзошла предыдущие века. Этот расцвет М. был связан по преимуществу с деятельностью академий; университеты играли меньшую роль. Отдалённость крупнейших математиков от университетского преподавания возмещалась той энергией, с которой все они, начиная с Л. Эйлера и Ж. Лагранжа, писали учебники и обширные, включающие отдельные исследования, трактаты.
III. Современная математика
Все созданные в 17 и 18 веках разделы математического анализа продолжали с большой интенсивностью развиваться в 19 и 20 веках.
1. Расширение предмета математики
Накопленный в 17 и 18 веках огромный фактический материал привёл к необходимости углублённого логического анализа и объединения его с новых точек зрения. Открытие и введение в употребление геометрической интерпретации комплексных чисел [датский землемер К. Вессель, 1799, и французский математик Ж. Арган (Арганд), 1806], доказательство неразрешимости в радикалах общего алгебраического уравнения пятой степени (Н. Абель , 1824), разработка О. Коши основ теории функций комплексного переменного, его работы по строгому обоснованию анализа бесконечно малых, создание Н. И. Лобачевским (1826, опубликовано в 1829—30) и Я. Больяй (1832) неевклидовой геометрии, работы К. Гаусса (1827) по внутренней геометрии поверхностей — типичные примеры наметившихся на рубеже 18 и 19 веков новых тенденций в развитии М.
Связь М. с естествознанием, оставаясь по существу не менее тесной, приобретает теперь более сложные формы. Большие новые теории возникают не только в результате непосредственных запросов естествознания или техники, но также из внутренних потребностей самой М. Таково в основном было развитие теории функций комплексного переменного, занявшей в начале и середине 19 века центральное положение во всём математическом анализе.
Другим замечательным примером теории, возникшей в результате внутреннего развития самой М., явилась «воображаемая геометрия» Лобачевского (см. Лобачевского геометрия ).
Можно привести ещё один пример того, как начавшийся в конце 18 века и 1-й половине 19 века пересмотр с более общих точек зрения добытых ранее конкретных математических фактов нашёл во 2-й половине 19 века и в 20 веке мощную поддержку в новых запросах естествознания. Теория групп ведёт своё начало с рассмотрения Ж. Лагранжем (1771) групп подстановок в связи с проблемой разрешимости в радикалах алгебраических уравнений высших степеней. Э. Галуа (1830—32, опубликовано в 1832, 1846) при помощи теории групп подстановок дал окончательный ответ на вопрос об условиях разрешимости в радикалах алгебраических уравнений любой степени. В середине 19 века А. Кэли дал общее «абстрактное» определение группы. С. Ли разработал, исходя из общих проблем геометрии, теорию непрерывных групп . И лишь после этого Е. С. Федоров (1890) и немецкий учёный А. Шёнфлис (1891) установили, что теоретико-групповым закономерностям подчинено строение кристаллов; ещё позднее теория групп становится мощным средством исследования в квантовой физике.
В более непосредственной и непрерывной зависимости от запросов механики и физики происходило формирование векторного исчисления и тензорного исчисления . Перенесение векторных и тензорных представлений на бесконечномерные величины происходит в рамках функционального анализа и тесно связывается с потребностями современной физики.
Таким образом, в результате как внутренних потребностей М., так и новых запросов естествознания круг количественных отношений и пространственных форм, изучаемых М., чрезвычайно расширяется; в него входят отношения, существующие между элементами произвольной группы, векторами, операторами в функциональных пространствах, всё разнообразие форм пространств любого числа измерений и т. п. При таком широком понимании терминов «количественные отношения» и «пространственные формы» приведённое в начале статьи определение М. применимо и на новом, современном этапе её развития.
Существенная новизна начавшегося в 19 веке этапа развития М. состоит в том, что вопросы необходимого расширения круга подлежащих изучению количественных отношений и пространственных форм становятся предметом сознательного и активного интереса математиков. Если прежде, например, введение в употребление отрицательных и комплексных чисел и точная формулировка правил действий с ними требовали длительной работы, то теперь развитие М. потребовало выработки приёмов сознательного и планомерного создания новых геометрических систем, новых «алгебр» с «некоммутативным» или даже «неассоциативным» умножением и так далее по мере возникновения в них потребности. Так, вопрос о том, не следует ли, например, ради анализа и синтеза того или иного типа релейно-контактных схем создать новую «алгебру» с новыми правилами действий, является не вызывающим особого удивления делом
Чрезвычайное расширение предмета М. привлекло в 19 веке усиленное внимание к вопросам её «обоснования», то есть критическому пересмотру её исходных положений (аксиом), построению строгой системы определений и доказательств, а также критическому рассмотрению логических приёмов, употребляемых при этих доказательствах. Работы по строгому обоснованию тех или иных отделов М. справедливо занимают значительное место в М. 19 и 20 веках. В применении к основам анализа (теория действительных чисел, теория пределов и строгое обоснование всех приёмов дифференциального и интегрального исчисления) результаты этой работы с большей или меньшей полнотой излагаются в настоящее время в большинстве учебников (даже чисто практического характера). Однако до последнего времени встречаются случаи, когда строгое обоснование возникшей из практических потребностей математической теории запаздывает. Так в течение долгого времени уже на рубеже 19 и 20 веков было с операционным исчислением , получившим весьма широкие применения в механике и электротехнике. Лишь с большим запозданием было построено логически безупречное изложение математической теории вероятностей. И в настоящее время ещё отсутствует строгое обоснование многих математических методов, широко применяемых в современной теоретической физике, где много ценных результатов получается при помощи «незаконных» математических приёмов.
Стандарт требований к логической строгости, остающийся господствующим в практической работе математиков над развитием отдельных математических теорий, сложился только к концу 19 века. Этот стандарт основан на теоретико-множественной концепции строения любой математической теории (см. Множеств теория , Аксиоматический метод ). С этой точки зрения любая математическая теория имеет дело с одним или несколькими множествами объектов, связанных между собой некоторыми отношениями. Все формальные свойства этих объектов и отношений, необходимые для развития теории, фиксируются в виде аксиом, не затрагивающих конкретной природы самих объектов и отношений. Теория применима к любой системе объектов с отношениями, удовлетворяющей положенной в её основу системе аксиом. В соответствии с этим теория может считаться логически строго построенной только в том случае, если при её развитии не используется никаких конкретных, не упомянутых в аксиомах, свойств изучаемых объектов и отношений между ними, а все новые объекты или отношения, вводимые по мере развития теории сверх упомянутых в аксиомах, формально определяются через эти последние.
Другую сторону строения любой математической теории освещает математическая логика . Система аксиом в изложенном выше (теоретико-множественном) понимании лишь ограничивает извне область применений данной математической теории, указывая свойства подлежащей изучению системы объектов с отношениями, но не даёт никаких указаний относительно логических средств, при помощи которых эту математическую теорию придется развивать. Например, свойства системы натуральных чисел с точностью до изоморфизма задаются при помощи очень простой системы аксиом. Тем не менее решение вопросов, ответ на которые в принципе однозначно предопределён принятием этой системы аксиом, оказывается часто очень сложным: именно теория чисел изобилует давно поставленными и очень простыми по формулировке проблемами, не нашедшими и до настоящего времени решения. Возникает, естественно, вопрос о том, происходит ли это только потому, что решение некоторых просто формулируемых проблем теории чисел требует очень длинной цепи рассуждений, составленной из известных и уже вошедших в употребление элементарных звеньев, или же потому, что для решения некоторых проблем теории чисел необходимы существенно новые, не употреблявшиеся ранее приёмы логического вывода.
Современная математическая логика дала на этот вопрос определённый ответ: никакая единая дедуктивная теория не может исчерпать разнообразия проблем теории чисел. Точнее, уже в пределах теории натуральных чисел можно сформулировать последовательность проблем p1 , p2 , ..., pn , ... такого рода, что для любой дедуктивной теории среди этих проблем найдётся неразрешимая в пределах данной теории (К. Гёдель ). При этом под «дедуктивной теорией» понимается теория, которая развивается из конечного числа аксиом при помощи построения сколь угодно длинных цепей рассуждений, составленных из звеньев, принадлежащих к конечному числу фиксированных для данной теории элементарных способов логического вывода.
Не грози Дубровскому! Том III
3. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
рейтинг книги
АН (цикл 11 книг)
Аномальный наследник
Фантастика:
фэнтези
героическая фантастика
попаданцы
аниме
рейтинг книги
Маршал Сталина. Красный блицкриг «попаданца»
2. Маршал Советского Союза
Фантастика:
альтернативная история
рейтинг книги
70 Рублей
1. 70 Рублей
Фантастика:
фэнтези
боевая фантастика
попаданцы
постапокалипсис
рейтинг книги
Энциклопедия лекарственных растений. Том 1.
Научно-образовательная:
медицина
рейтинг книги
