Большая Советская Энциклопедия (МА)
Шрифт:
Одной из центральных проблем М. к. является задача построения наивыгоднейших картографических проекций, то есть проекций, в которых искажения в каком-либо смысле сведены к минимуму. Она полностью ещё не решена даже для хорошо известных классов проекций, хотя частными случаями этой задачи занимались многие известные учёные (Л. Эйлер , К. Гаусс , П. Л. Чебышев и другие). Проблема ставится двояко: для заданной области изыскивают проекции с минимумом искажений либо из всего мыслимого множества проекций (идеальные проекции), либо из определённого класса (наилучшие проекции класса). В обоих случаях задача с математической точки зрения обращается в проблему приближения функций двух переменных. Но в последней также существуют различные постановки: обращаясь, например, к теории наилучших приближений, говорят о наивыгоднейших проекциях минимаксного типа, а пользуясь теорией квадратических приближений, исследуют наивыгоднейшие проекции вариационного типа. Общая проблема построения наивыгоднейших картографических проекций приводит к ряду новых экстремальных задач на условный минимакс и других. До конца исследован лишь случай наилучших конформных проекций. Согласно теореме Чебышева — Граве, наилучшей конформной проекцией (чебышевской)
Лит.: Соловьев М. Д., Математическая картография, М., 1969; Мещеряков Г. А., Теоретические основы математической картографии, М., 1968; его же, О современных задачах математической картографии, «Труды Новосибирского института инженеров геодезии, аэрофотосъемки и картографии», 1967, т. 20; Каврайский В. В., Современные задачи математической картографии. Тезисы доклада на шестой научной сессии ЛГУ, Л., 1949; Гинзбург Г. А., О задачах математической картографии в СССР в области мелкомасштабных карт, «Геодезия и картография», 1958, № 12; Павлов А. А., Математическая картография, в сборнике: Итоги науки и техники. Картография, т. 5, М., 1972, с. 53—66.
Г. А. Мещеряков.
Математическая лингвистика
Математи'ческая лингви'стика , математическая дисциплина, разрабатывающая формальный аппарат для описания строения естественных и некоторых искусственных языков. Возникла в 50-х годах 20 века в связи с назревшей в языкознании потребностью уточнения его основных понятий. В М. л. используются по преимуществу идеи и методы алгебры, алгоритмов теории и автоматов теории . Не являясь частью лингвистики, М. л. развивается в тесном взаимодействии с ней. М. л. называют иногда лингвистические исследования, в которых применяется какой-либо математический аппарат.
Математическое описание языка основано на восходящем к Ф. де Соссюру представлении о языке как механизме, функционирование которого проявляется в речевой деятельности его носителей; её результатом являются «правильные тексты» — последовательности речевых единиц, подчиняющиеся определённым закономерностям, многие из которых допускают математическое описание. Изучение способов математического описания правильных текстов (в первую очередь предложений) составляет содержание одного из разделов М. л. — теории способов описания синтаксической структуры. Для описания строения (синтаксической структуры) предложения можно либо выделить в нём «составляющие» — группы слов, функционирующие как цельные синтаксические единицы, либо указать для каждого сло'ва те слова', которые от него непосредственно зависят (если такие есть). Так, в предложении «Лошади кушают овёс» при описании по 1-му способу составляющими будут: всё предложение I , каждое отдельное слово и словосочетание С = «кушают овёс» (рис. 1 ; стрелки означают «непосредственное вложение»); описание по 2-му способу даёт схему, показанную на рисунке 2 . Математические объекты, возникающие при таком описании структуры предложения, называются деревом составляющих (1-й способ) и деревом синтаксического подчинения (2-й способ).
Другой раздел М. л., занимающий в ней центр, место, — теория формальных грамматик, возникшая главным образом благодаря работам Н. Хомского . Она изучает способы описания закономерностей, которые характеризуют уже не отдельный текст, а всю совокупность правильных текстов того или иного языка. Эти закономерности описываются путём построения «формальной грамматики» — абстрактного «механизма», позволяющего с помощью единообразной процедуры получать правильные тексты данного языка вместе с описаниями их структуры. Наиболее широко используемый тип формальной грамматики — так называемая порождающая грамматика, или грамматика Хомского, — упорядоченная система G = <V, W, I , R>, где: V и W — непересекающиеся конечные множества; I — элемент W; R — конечное множество правил вида j®y, где j и y — цепочки (конечные последовательности) элементов V и W. Если j®y правило грамматики G и w 1 , w 2 , — цепочки из элементов V и W, то говорят, что цепочка w 1 yw 2 непосредственно выводима в G из w 1 jw 2 . Если x , x1 , …, xn — цепочки и для каждого i = 1, ..., n цепочка xi , непосредственно выводима из xi-1 , то говорят, что xn выводима из x в G. Множество цепочек из элементов V, выводимых в G из I , называется языком, порождаемым грамматикой G. Если все правила грамматики G имеют вид A ®y, где А — элемент W, G называется бесконтекстной, или контекстно-свободной. В лингвистической интерпретации элементы V чаще всего представляют собой слова, элементы W — символы грамматических категорий, I — символ категории «предложение». В бесконтекстной грамматике вывод предложения даёт для него дерево составляющих,
М. л. изучает также аналитические модели языка, в которых на основе тех или иных данных о речи, считающихся известными (например, множества правильных предложений), производятся формальные построения, дающие некоторые сведения о структуре языка. Приложение методов М. л. к конкретным языкам относится к области лингвистики (см. Языкознание ).
Лит.: Хомский Н., Синтаксические структуры, в сборнике: Новое в лингвистике, в. 2, М., 1962; Гладкий А. В.. Мельчук И. А., Элементы математической лингвистики, М., 1969; Маркус С., Теоретико-множественные модели языков, перевод с английского, М., 1970; Гладкий А. В., Формальные грамматики и языки, М., 1973.
А. В. Гладкий.
Рис. 3 к ст. Математическая лингвистика.
Рис. 2 к ст. Математическая лингвистика.
Рис. 1 к ст. Математическая лингвистика.
Математическая логика
Математи'ческая ло'гика , логика, развиваемая математическим методом. Характерным для М. л. является использование формальных языков с точным синтаксисом и чёткой семантикой, однозначно определяющими понимание формул. Потребность в такой логике выявилась в начале 20 века в связи с интенсивной разработкой оснований математики , возникновением множеств теории , где были открыты антиномии (см. Парадокс ), уточнением понятия алгоритма и другими глубокими и принципиальными вопросами математической науки. Однако значение М. л. для науки в целом не исчерпывается её математическими приложениями, поскольку хорошо рассуждать и доказывать приходится во всех науках. Вот почему М. л. с полным правом может быть охарактеризована как логика на современном этапе. См. статья Логика (раздел Предмет и метод современной логики) и литературу при этой статье.
А. А. Марков.
Математическая модель
Математи'ческая моде'ль , приближённое описание какого-либо класса явлений внешнего мира, выраженное с помощью математической символики. М. м. — мощный метод познания внешнего мира, а также прогнозирования и управления. Анализ М. м. позволяет проникнуть в сущность изучаемых явлений. Процесс математического моделирования , то есть изучения явления с помощью М. м., можно подразделить на 4 этапа.
Первый этап — формулирование законов, связывающих основные объекты модели. Этот этап требует широкого знания фактов, относящихся к изучаемым явлениям, и глубокого проникновения в их взаимосвязи. Эта стадия завершается записью в математических терминах сформулированных качеств, представлений о связях между объектами модели.
Второй этап — исследование математических задач, к которым приводят М. м. Основным вопросом здесь является решение прямой задачи, то есть получение в результате анализа модели выходных данных (теоретических следствий) для дальнейшего их сопоставления с результатами наблюдений изучаемых явлений. На этом этапе важную роль приобретают математический аппарат, необходимый для анализа М. м., и вычислительная техника — мощное средство для получения количеств, выходной информации как результата решения сложных математических задач. Часто математические задачи, возникающие на основе М. м. различных явлений, бывают одинаковыми (например, основная задача линейного программирования отражает ситуации различной природы). Это даёт основание рассматривать такие типичные математические задачи как самостоятельный объект, абстрагируясь от изучаемых явлений.
Третий этап — выяснение того, удовлетворяет ли принятая гипотетическая модель критерию практики, то есть выяснение вопроса о том, согласуются ли результаты наблюдений с теоретическими следствиями модели в пределах точности наблюдений. Если модель была вполне определена — все параметры её были заданы, — то определение уклонений теоретических следствий от наблюдений даёт решения прямой задачи с последующей оценкой уклонений. Если уклонения выходят за пределы точности наблюдений, то модель не может быть принята. Часто при построении модели некоторые её характеристики остаются не определёнными. Задачи, в которых определяются характеристики модели (параметрические, функциональные) таким образом, чтобы выходная информация была сопоставима в пределах точности наблюдений с результатами наблюдений изучаемых явлений, называются обратными задачами. Если М. м. такова, что ни при каком выборе характеристик этим условиям нельзя удовлетворить, то модель непригодна для исследования рассматриваемых явлений. Применение критерия практики к оценке М. м. позволяет делать вывод о правильности положений, лежащих в основе подлежащей изучению (гипотетической) модели. Этот метод является единственным методом изучения недоступных нам непосредственно явлений макро- и микромира.