Большая Советская Энциклопедия (МА)
Шрифт:
Лит.: Яновский Б. М., Земной магнетизм, [т. 2, 2 изд.], Л., 1963; Чечурина Е. Н., Приборы для измерения магнитных величин, М., 1969; Померанцев Н. М., Рыжков В. М., Скроцкий Г. В., Физические основы квантовой магнитометрии, М., 1972; Instrumenten und Massenmethoden, в книге: Geomagnetismus und Aeronomie, Bd 2, В., 1960; Communications pr'esent'ees an colloque international champs magn'etiques faibles d’Int'eret g'eophysique et spatial, Paris, 20—23 mai 1969, «Revue de physique appliqu'ee», 1970, t. 5, № 3.
Ш. Ш. Долгинов.
Рис. 2. Блок-схема и конструкция преобразователя вибрационного тесламетра: 1 — измерительная катушка, укрепленная на торце пьезокристалла 2 (вибратора); 3 — зажим для крепления пьезокристалла; 4 — усилитель сигнала; сигнал детектируется и измеряется прибором магнитоэлектрической системы 5; 6 — генератор электромагнитных
Рис. 1. Схема кварцевого магнитометра для измерения вертикальной составляющей (Z) напряжённости геомагнитного поля: 1 — оптическая система зрительной трубы; 2 — оборотная призма для совмещения шкалы 9 с полем зрения; 3 — магниточувствительная система (постоянный магнит на кварцевой растяжке 5); 4 — зеркало; 6 — магнит для частичной компенсации геомагнитного поля (изменения диапазона прибора); 7 — кварцевая рамка; 8 — измерительный магнит. Магниточувствительную систему приводят в горизонтальное положение, воздействуя измерительным магнитом. По углу поворота магнита 8 судят о величине Z—компоненты. 10 — оптическая система для освещения шкалы.
Рис. 3. Принципиальная схема тесламетра, основанного на эффекте Холла (компенсационного типа): E1 и Е2 — источники постоянного тока; r1 и r2 — резисторы; G — гальванометр, mА — миллиамперметр; ПХ — преобразователь Холла (полупроводниковая пластинка). Эдс Холла компенсируется падением напряжения на части калиброванного сопротивления r2 , через которое протекает постоянный ток.
Магнитомеханические явления
Магнитомехани'ческие явле'ния, гиромагнитные явления, группа явлений, обусловленных взаимосвязью магнитного и механических моментов микрочастиц — носителей магнетизма. Любая микрочастица, обладающая определённым моментом количества движения (электрон, протон, нейтрон, атомное ядро, атом), имеет также и определённый магнитный момент . Благодаря этому увеличение момента количества движения системы микрочастиц — физического тела, образца — приводит к возникновению у образца дополнительного магнитного момента и, наоборот, при намагничивании образец приобретает дополнительный механический момент.
Возникновение магнитного момента (намагниченности) в ферромагнитных образцах при их вращении было обнаружено в 1909 С. Барнеттом (см. Барнетта эффект ). Обратный эффект — поворот свободно подвешенного ферромагнитного образца при его намагничивании во внешнем магнитном поле — открыт в 1915 в опытах А. Эйнштейна и В. де Хааза (см. Эйнштейна — де Хааза эффект ).
М. я. позволяют определить отношение магнитного момента атома к его полному механическому моменту (так называемое гиромагнитное или магнитомеханическое отношение ) и сделать заключение о природе носителей магнетизма в различных веществах. Так было установлено, что в 3 d-meталлах (Fe, Со, Ni) магнитный момент обусловлен спиновыми моментами электронов (см. Спин ). В других веществах (например, редкоземельных металлах) магнитный момент создаётся как спиновыми, так и орбитальными моментами электронов.
В связи с созданием новых, в первую очередь резонансных, методов исследования магнетизма (см. Магнитный резонанс ) интерес к М. я. в значительной степени уменьшился.
Лит.: Дорфман Я. Г., Магнитные свойства и строение вещества, М., 1955; Вонсовский С. В., Магнетизм, М., 1971; Scott G., Review of gyromagnetic ratio experiments, «Reviews of Modern Physics», 1962, v. 34, № 1, p. 102.
Р. З. Левитин.
Магнитомеханическое отношение
Магнитомехани'ческое отноше'ние, гиромагнитное отношение, отношение магнитного момента элементарных частиц (и состоящих из них систем — атомов, молекул, атомных ядер и т.д.) к их моменту количества движения (механическому моменту). Для каждой элементарной частицы, обладающей отличным от нуля механическим моментом — спином , М. о. имеет определённое значение. Значения М. о. для различных состояний атомной системы определяются по формуле g = g g , где g — единица М. о., g — Ланде множитель . В этом случае за единицу М. о. принимают его величину для орбитального движения электрона в атоме: — e / 2me c , где е — величина элементарного электрического заряда, mе — масса электрона, с — скорость света. В случае ядер за единицу М. о. принимают аналогичную
Величина М. о. определяет действие магнитного поля на систему, обладающую магнитным моментом. Согласно классической теории, магнитный момент во внешнем магнитном поле напряжённости Н совершает прецессию — равномерно вращается вокруг направления Н , сохраняя определённый угол наклона, с угловой скоростью w = —gН . В частном случае, когда магнитный момент обусловлен орбитальным движением электронов, получается Лармора прецессия . Согласно квантовой теории, масштаб магнитного расщепления уровней энергии в магнитном поле (см. Зеемана эффект ) определяется М. о.; он равен g
М. А. Ельяшевич.
Магнитооптика
Магнитоо'птика, магнетооптика, раздел физики, в котором изучаются изменения оптических свойств сред под действием магнитного поля и обусловливающие эти изменения особенности взаимодействия оптического излучения (света) с помещенным в поле веществом.
Магнитное поле, как и всякое векторное поле, выделяет в пространстве определённое направление; поле в среде придаёт этой среде дополнительную анизотропию , в частности оптическую анизотропию . (Своеобразие симметрии, которой обладает магнитное поле, заключается в том, что его напряжённость Н и магнитная индукцияВ — не просто векторы, но осевые векторы .) Энергия атома (молекулы, иона) среды начинает зависеть от взаимного направления поля и магнитного момента атома; в результате уровни энергии атома расщепляются (иначе говорят, что поле снимает вырождение уровней). Соответственно, расщепляются спектральные линии оптических переходов между уровнями (см. также Атом , Излучение , Молекула ). В этом состоит один из эффектов М. — Зеемана эффект . Поляризация зеемановских компонент («отщепленных» линий) различна (см. Поляризация света ); поэтому в веществе, помещенном в магнитное поле, поглощение таких же компонент проходящего света (обратный эффект Зеемана) различно в зависимости от состояния их поляризации. Так, при распространении монохроматического света вдоль поля (продольномэффекте Зеемана) его право- и левоциркулярно поляризованные составляющие поглощаются по-разному (так называемый магнитный круговой дихроизм), а при распространении света поперёк поля (поперечном эффекте Зеемана) имеет место магнитный линейный дихроизм, то есть разное поглощение составляющих, линейно-поляризованных параллельно и перпендикулярно магнитному полю. Эти поляризационные эффекты проявляют сложную зависимость от длины волны излучения (сложный спектральный ход), знание которой позволяет определить величину и характер зеемановского расщепления в тех случаях, когда оно много меньше ширины спектральных линий . (Аналогичные эффекты наблюдаются в люминесценции .)
Расщепление спектральных линий влечёт за собой дополнительное расщепление дисперсионных кривых, характеризующих зависимость показателя преломления среды от длины волны излучения (см. Дисперсия света . Преломление света ). В результате при продольном (по полю) распространении показатели преломления для света с правой и левой круговыми поляризациями становятся различными (магнитное циркулярное двойное лучепреломление ), а линейно-поляризованный монохроматический свет, проходя через среду, испытывает вращение плоскости поляризации . Последнее явление называется Фарадея эффектом . Вблизи линии поглощения («скачка» на дисперсионной кривой) фарадеевское вращение проявляет характерную немонотонную зависимость от длины волны — эффект Макалузо — Корбино. При поперечном относительно магнитного поля распространении света различие показателей преломления для линейных поляризаций приводит к линейному магнитному двойному лучепреломлению, известному как Коттона — Мутона эффект (или эффект Фохта).