Чтение онлайн

на главную - закладки

Жанры

Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим
Шрифт:

Вопрос полезности

Благодаря тому что большие данные для многих компаний превращаются в источник конкурентного преимущества, изменится структура целых отраслей. Однако награды распределятся неравномерно. В выигрыше останутся крупные и мелкие компании, потеснив остальных.

Крупнейшие игроки, такие как Amazon и Google, продолжат расти. Но, в отличие от индустриальной эпохи, их конкурентное преимущество будет опираться на физические масштабы. Огромная техническая инфраструктура их центров обработки данных, несомненно, важная, но не самая значительная характеристика: ресурсы для цифрового хранения и обработки данных можно недорого арендовать всего за несколько минут. Компании могут регулировать необходимое количество вычислительной мощности на основе фактического спроса, тем самым превращая в переменную стоимость то, что раньше считалось фиксированной. Это подрывает преимущества масштаба на основе технической инфраструктуры,

которым уже давно пользуются крупные компании.

Масштаб все еще имеет значение, но его фокус сместился. Теперь важен масштаб данных. Под ним подразумевается наличие больших пулов данных и возможность легко получать еще больше. Таким образом, крупные держатели данных будут процветать, собирая и храня больше «сырых» материалов о своей деятельности, из которых можно извлечь выгоду при повторном использовании.

Задача победителей в области малых данных, равно как и «чемпионов», ведущих свою деятельность вне интернета (например, Walmart, FedEx, Proctor & Gamble, Nestle, Boeing и пр.), состоит в том, чтобы высоко ценить силу больших данных, а также стратегически подходить к сбору и анализу информации. И начинающие, и проверенные временем компании стараются занять в новых бизнес-областях положение, которое позволило бы им записывать огромные потоки данных. Пример тому — «набеги» Apple на мобильные телефоны. До появления iPhone мобильные операторы успели накопить потенциально ценные сведения об абонентах, но не сумели извлечь из них выгоду. Компания Apple, напротив, потребовала указать в своих договорах с операторами, что ей достанется большая часть наиболее полезной информации. Собирая данные от десятков операторов по всему миру, Apple получает гораздо более полную картину использования мобильных телефонов, чем любой из операторов сотовой связи. Масштабное преимущество Apple основано на данных, а не на материальных ресурсах.

Большие данные открывают захватывающие возможности для всех. Умные и проворные мелкие игроки извлекут преимущества «масштаба без нагромождений» (цитируя знаменитую фразу профессора Бриньолфссона). [129] Они обеспечат себе большое виртуальное присутствие при незначительных материальных ресурсах, а также широко внедрят инновационные решения при небольших затратах. И, что немаловажно, лучшие службы по обработке больших данных основаны прежде всего на инновационных идеях, а потому не обязательно требуют больших начальных инвестиций. Данные можно лицензировать, а не приобретать, проводить анализ на недорогих «облачных» платформах, а расходы на лицензирование покрывать за счет процента от получаемых доходов.

129

Brynjolfsson, Erik. Scale without Mass: Business Process Replication and Industry Dynamics / Erik Brynjolfsson, Andrew McAfee, Michael Sorell, and Feng Zhu // HBS working paper. — September 2006. URL:also http://hbswk.hbs.edu/item/5532.html.

Вполне вероятно, что все это касается не только пользователей данных, но и держателей, которые могут добавить к своим запасам данных веские преимущества (ведь более существенную выгоду обеспечивает только добавочная себестоимость). Во-первых, у держателей данных уже есть инфраструктура для хранения и обработки информации. Во-вторых, объединение наборов данных придает им особое значение. И, наконец, наличие интернет-магазина для получения данных значительно упрощает жизнь пользователей. [130] Более того, может возникнуть радикально новый тип держателей данных — частные лица. Поскольку ценность данных становится все более очевидной, держатели информации, имеющей к ним отношение (включая данные об их покупательских вкусах, предпочитаемых СМИ, о состоянии здоровья и пр.), окажутся в выигрышном положении.

130

О постепенном увеличении масштаба держателей данных, см. также: Bakos, Yannis. Bundling Information Goods: Pricing, Profits, and Efficiency / Yannis Bakos and Erik Brynjolfson // Management Science. — Dec. 1999. — Vol. 45. — P. 1613–1630.

И тогда потребители получат возможности, о которых и не мечтали. Отдельные лица смогут выбирать, кому лицензировать данные и на каких условиях. Конечно, кто-то начнет заламывать цены. А многие наверняка согласятся на повторное использование их данных бесплатно в обмен на лучшее обслуживание (например, точные рекомендации книг на сайте Amazon). Но для массы подкованных в цифровом плане пользователей идея маркетинга и продажи личной информации может стать столь же естественной, как ведение блога, публикация твитов или редактирование статей Википедии.

Для такого развития событий мало изменения взглядов и предпочтений пользователей. В настоящее время

лицензирование личных данных было бы слишком трудоемким и дорогостоящим процессом и для пользователей, и для компаний с точки зрения заключения отдельных сделок с каждым из них. Скорее всего, появятся новые посредники, которые будут объединять данные многих пользователей и обеспечивать простой способ лицензирования данных, автоматизируя все операции. При достаточно низких затратах и доверии пользователей к таким посредникам, возможно, сформируется рынок личных данных, а частные лица станут успешными держателями данных. Такие группы, как ID3, одним из основателей которой является Сэнди Пентлэнд — гуру аналитики личных данных в MIT Media Lab, уже работают над тем, чтобы превратить эту фантазию в реальность.

Пока нет таких посредников и их первых клиентов, пользователи, желающие стать держателями собственных данных, имеют очень скромные возможности. А для того чтобы не утратить их, прежде чем появятся посредники и инфраструктура для преуспевания частных держателей данных, пользователям имеет смысл раскрывать как можно меньше информации.

Для средних компаний большие данные не имеют весомого значения. «Преимущество крупных компаний — в их масштабе, а малых и проворных — в их расходах и инновациях», — утверждает Филип Эванс из Boston Consulting Group, отличающийся прозорливостью в области технологий и бизнеса. [131] Средние компании в традиционных секторах выживают благодаря своему размеру, который обеспечивает преимущества масштаба, но при этом достаточно компактен, чтобы не утратить гибкости, которой нет у крупных игроков. В мире больших данных нет минимального масштаба, по достижении которого компании придется вкладывать средства в производственную инфраструктуру. Пользователи больших данных, которые хотят преуспевать, но при этом оставаться гибкими, обнаружат, что им больше не нужно достигать порогового размера — можно благополучно процветать и при небольшом (или стать частью гиганта в области больших данных).

131

Филип Эванс: интервью авторам (2011 и 2012 гг.).

Большие данные вытесняют средние компании отрасли, заставляя их изменить масштаб (стать крупнее или меньше, но проворнее) или свернуть работу. Многие традиционные секторы — от сферы финансовых услуг до производства фармацевтических препаратов — перейдут на использование больших данных. Это не приведет к исчезновению всех средних компаний во всех секторах, но, безусловно, окажет давление на компании в секторах, особенно склонных к внедрению анализа больших данных.

Большие данные коренным образом изменят конкурентные преимущества стран. В период изобилия инноваций, когда производство по большей части переместилось в развивающиеся страны, преимущество промышленно развитых стран состоит в том, что они располагают данными и знают, как их применить. Плохая новость: это преимущество не вечно. Когда остальные страны мира сумеют перенять эти технологии, как уже внедрили компьютерные вычисления и интернет, Запад утратит лидерство в области больших данных. Хорошая новость для энтузиастов из развитых стран: большие данные, скорее всего, усилят как сильные, так и слабые стороны компаний. Поэтому те, кто освоил работу с большими данными, смогут не только превзойти конкурентов, но и расширить сферу влияния.

Гонка за лидерство началась. Каждая компания может извлечь пользу из данных, действуя с умом. Так, поисковые алгоритмы Google учитывают выбросы данных пользователей для повышения качества результатов, а немецкий поставщик автомобильных запчастей на основе данных совершенствует свои комплектующие. Информация дает компаниям возможность не только оптимизировать имеющиеся продукты и услуги, но и создавать новые.

Несмотря на радужные перспективы, есть причины для беспокойства. Большие данные обеспечивают все более точные прогнозы об окружающем мире и нашей роли в нем. Мы можем оказаться не готовы к влиянию этих прогнозов на нашу частную жизнь и принятие решений, ведь наши мировоззрение и структура учреждений формировались в условиях дефицита, а не избытка информации. В следующей главе мы прольем свет на темную сторону больших данных. 

Глава 8

Риски

Почти сорок лет, вплоть до падения Берлинской стены в 1989 году, Министерство государственной безопасности ГДР (нем. Ministerium f"ur Staatssicherheit — Stasi (Штази)) шпионило за сотнями тысяч людей. Около ста тысяч штатных сотрудников вели наблюдения с улиц и из окон автомобилей. Они вскрывали письма и заглядывали в банковские счета, прослушивали квартиры и телефонные линии. Они заставляли влюбленных и супругов, родителей и детей шпионить друг за другом, подрывая важнейшие основы доверия между людьми. Итоговые материалы (в том числе не менее 39 миллионов единиц картотеки и 100 километров документов) подробно описывали самые сокровенные аспекты жизни простых людей. В ГДР был достигнут небывало масштабный уровень надзора.

Поделиться:
Популярные книги

Белые погоны

Лисина Александра
3. Гибрид
Фантастика:
фэнтези
попаданцы
технофэнтези
аниме
5.00
рейтинг книги
Белые погоны

Черный дембель. Часть 1

Федин Андрей Анатольевич
1. Черный дембель
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Черный дембель. Часть 1

Лишняя дочь

Nata Zzika
Любовные романы:
любовно-фантастические романы
8.22
рейтинг книги
Лишняя дочь

Темный Лекарь 5

Токсик Саша
5. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 5

Последний из рода Демидовых

Ветров Борис
Фантастика:
детективная фантастика
попаданцы
аниме
5.00
рейтинг книги
Последний из рода Демидовых

Чиновникъ Особых поручений

Кулаков Алексей Иванович
6. Александр Агренев
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Чиновникъ Особых поручений

Попаданка в академии драконов 4

Свадьбина Любовь
4. Попаданка в академии драконов
Любовные романы:
любовно-фантастические романы
7.47
рейтинг книги
Попаданка в академии драконов 4

Боги, пиво и дурак. Том 6

Горина Юлия Николаевна
6. Боги, пиво и дурак
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 6

Курсант: Назад в СССР 10

Дамиров Рафаэль
10. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 10

Сделай это со мной снова

Рам Янка
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сделай это со мной снова

Болотник 2

Панченко Андрей Алексеевич
2. Болотник
Фантастика:
попаданцы
альтернативная история
6.25
рейтинг книги
Болотник 2

Камень Книга двенадцатая

Минин Станислав
12. Камень
Фантастика:
боевая фантастика
городское фэнтези
аниме
фэнтези
5.00
рейтинг книги
Камень Книга двенадцатая

Небо для Беса

Рам Янка
3. Самбисты
Любовные романы:
современные любовные романы
5.25
рейтинг книги
Небо для Беса

Надуй щеки! Том 4

Вишневский Сергей Викторович
4. Чеболь за партой
Фантастика:
попаданцы
уся
дорама
5.00
рейтинг книги
Надуй щеки! Том 4