Чтение онлайн

на главную - закладки

Жанры

CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии
Шрифт:

Рис. 4.12. Спектр полосы пропускания композитного видеосигнала

Все вышесказанное является изложением, весьма упрощенным, очень важной спектральной теории Фурье, которая утверждает, что каждый сигнал во временной области имеет свое отображение в частотной области. Спектральная теория Фурье применима на практике — периодические электрические сигналы с широкой полосой пропускания можно исследовать более эффективно при помощи анализа их спектра частот. Не будем углубляться в эту теорию, но заметим для пользователей систем видеонаблюдения: концепция анализа спектра частот очень важна для исследования сложных сигналов, таких как собственно

видеосигнал. Видеосигнал — это, пожалуй, один из наиболее сложных электрических сигналов, и его практически невозможно точно описать математически, так как во временной области сигнал постоянно меняется. Видеоинформация (т. е. компоненты яркости и цветности) непрерывно меняется. Однако, поскольку мы формируем видеоизображения посредством периодического сканирования лучом, мы можем аппроксимировать видеосигнал периодическим сигналом. Одним из главных компонентов в этой периодичности будет частота строк — для CCIR и SECAM 25 x 625 = 15625 Гц; для EIA 30 x 525 = 15750 Гц.

Можно показать, что спектр упрощенного видеосигнала состоит из гармоник частоты строк, вокруг которых есть сопутствующие компоненты, как на левой, так и на правой стороне (боковых полосах). Расстояния между компонентами зависят от содержания видеоизображения и динамики двигательной активности. Кроме того, очень важно обратить внимание, что такой спектр, составленный из гармоник и их компонентов, является сходящимся, то есть гармоники уменьшаются по амплитуде с увеличением частоты. Но еще более важный вывод из спектральной теории Фурье состоит в том, что позиции гармоник и их компонентов в спектре видеосигнала зависят только от анализа изображения (соотношение 4:3, чересстрочная развертка 625). Энергетическое распределение видеосигнала между гармониками зависит от содержания изображения. Тем не менее, гармоники занимают точные положения, потому что они зависят только от частоты строк.

Другими словами, динамика видеосигнала и амплитуда определенных компонентов в боковых полосах меняются, но положения гармоник (как поднесущих частот) остаются постоянными.

Рис. 4.13. Пример смещения частотных каналов в телевещании

Это очень важный вывод. В вещательном ТВ он помог найти способ уменьшить спектр видеосигнала до минимума без особой потери деталей. Конечно, всегда можно найти компромисс, но так как основная энергия видеосигнала сосредоточена около нулевой частоты и нескольких первых гармоник, нет никакой необходимости передавать полный спектр видеосигнала. Ученые и инженеры использовали все эти факты, пытаясь найти компромиссное решение: они стремились рассчитать, насколько малую часть полосы пропускания следует использовать при передаче видеоизображения, чтобы не потерять слишком много деталей. Как мы уже упоминали, рассматривая различные ТВ-стандарты, полоса частот будет тем шире, чем больше строк сканирования используется в системе и чем выше разрешение сигнала.

Принимая во внимание ограниченный размер электронного луча (который также определяет минимальные воспроизводимые элементы изображения), физический размер ТВ-экранов, расстояние от зрителя до экрана, сложность и издержки производства телесистем, можно заключить, что для качественного воспроизведения телесигнала достаточно ширины полосы пропускания в 5 МГц. Можно использовать более широкую полосу, но тогда будет очень низким коэффициент достижения качества в сравнении с затратами. Фактически, в телевещательных студиях камеры, записывающее оборудование и мониторы имеют намного более высокие стандарты, со спектрами до 10 МГц. Но они предназначены исключительно для внутреннего пользования, для качественной записи и дублирования (перезаписи). Прежде чем такой сигнал будет модулирован и передан на радиочастоте, он сокращается до 5 МГц, к которым прибавляется около 0.5 МГц для левого и правого каналов звукового сопровождения. На телепередатчике такой сигнал модулируется так, чтобы передавалась только его боковая подавленная полоса частот вместе с полной полосой частот, включая буферную зону разделения, что в сумме равняется 7 МГц (для PAL). Но обратите внимание, что фактически используемая полоса видеосигнала в телевещании равна всего 5 МГц. Для читателей, которым это интересно, заметим, что в большинстве стран, использующих стандарт PAL, видеосигнал модулируется методами амплитудной модуляции (AM), в то время как звук — частотной модуляцией (ЧМ).

Аналогичные соображения учитываются при рассмотрении сигналов NTSC, где полоса частот в телевещании равна примерно 4.2 МГц.

В большинстве систем видеонаблюдения мы не сталкиваемся с подобными ограничениями в отношении полосы частот, поскольку мы не передаем радиочастотно-модулированный

видеосигнал. Нам не надо волноваться по поводу помех соседних видеоканалов. В видеонаблюдении мы используем необработанный видеосигнал в том виде, в каком он выходит из камеры, это базовый видеосигнал. Обычно его сокращенно обозначают CVBS (composite video bar signal — полный видеосигнал). Спектр такого сигнала, как уже упоминалось, колеблется в пределах от 0 до 10 МГц — в зависимости от качества источника.

Спектральная емкость коаксиального кабеля как канала передачи гораздо шире. Самый распространенный коаксиальный кабель 75 Ом RG-59B/U, например, может легко передать сигналы с шириной полосы частот до 100 МГц. Конечно, он используется для передачи информации на небольшие расстояния — до двухсот метров, но для большинства систем видеонаблюдения этого достаточно. Различные средства передачи имеют различные ограничения полосы частот. Одни имеют большую, чем коаксиальные кабели, ширину полосы пропускания, другие — меньшую, но у большинства полоса все же значительно шире 10 МГц.

Цветной видеосигнал

Когда появилось цветное телевидение, в его основе лежали определения и ограничения монохромного сигнала. Сохранение совместимости между черно-белым и цветным ТВ имело принципиальную важность. Единственный способ, каким цветовая информация (хроматическая) может быть передана вместе с яркостью без увеличения полосы пропускания частот видеосигнала, состоял в том, чтобы модулировать цветовую информацию частотой, которая бы попадала точно между компонентами спектра яркости. Это означает, что спектр сигнала цветности перемежается со спектром сигнала яркости таким образом, что они не мешают друг другу. Эта частота называется хроматической поднесущей. Было обнаружено, что наиболее подходящей для PAL является частота 4.43361875 МГц. В NTSC используется тот же принцип: в данном случае необходима цветовая поднесущая 3.579545 МГц.

Здесь необходимо уточнить и подчеркнуть, что NTSC характеризуется именно 29.97 кадрами, а не 30(!). Это объясняется определением цветового сигнала в NTSC, который, как гласит видеостандарт RS170A, базируется в точности на частоте цветовой поднесущей в 3.579545 МГц. Частота строчной развертки определяется умножением 2/455 на частоту цветовой поднесущей, что равняется 15734 Гц. Из нее выводится частота кадровой развертки; NTSC рекомендует высчитывать ее умножением 2/525 на частоту строчной развертки. В результате получается 59.94 Гц для частоты кадров, или скорости полей. Однако для простоты и удобства в этой книге мы будем говорить, что в NTSC сигналу соответствует 60 полей.

Как мы уже упоминали в разделе «Цветное телевидение», основы воспроизведения цвета лежат в аддитивном смешении трех основных цветовых сигналов: красного, зеленого и синего. Так, для передачи полного цветового сигнала, теоретически, кроме информации яркости, требуются еще три разных сигнала. На заре цветного ТВ это казалось невозможным, особенно, когда для сохранения совместимости с монохромными стандартами использовалась область между 4 и 5 МГц.

Для этого требовалась сложная, но умная процедура. В рамках нашей книги объяснить такую процедуру не представляется возможным, но чтобы читатели лучше понимали все сложности воспроизведения цвета в ТВ, приведем следующие факты.

Рис. 4.14. Цветные полосы. Цветные полосы (NTSC) на экране вектороскопа

Рис. 4.15. Цветные полосы. Цветные полосы (PAL) на экране вектороскопа

В реальной ситуации помимо сигнала яркости, который часто обозначается как Y = UY, объединяются еще два сигнала (а не три). Это так называемые цветовые разности: V = UR — UYи U = UR — UY, т. е. разности между красным и яркостным сигналом и между синим и яркостным. Почему вместо простых значений R, В (и G) (соответственно для красного, синего и зеленого) используются цветовые разности? Для совместимости с монохромной системой. А именно, было обнаружено, что, когда белый или серый цвет передается через систему цветного ТВ, в ЭЛТ должен присутствовать только сигнал яркости. Чтобы устранить цветовые компоненты в системе, была введена цветовая разность.

Поделиться:
Популярные книги

Лучший из худший 3

Дашко Дмитрий
3. Лучший из худших
Фантастика:
городское фэнтези
попаданцы
аниме
6.00
рейтинг книги
Лучший из худший 3

Идеальный мир для Лекаря 14

Сапфир Олег
14. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 14

Неудержимый. Книга XII

Боярский Андрей
12. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XII

Надуй щеки! Том 6

Вишневский Сергей Викторович
6. Чеболь за партой
Фантастика:
попаданцы
дорама
5.00
рейтинг книги
Надуй щеки! Том 6

Черный дембель. Часть 2

Федин Андрей Анатольевич
2. Черный дембель
Фантастика:
попаданцы
альтернативная история
4.25
рейтинг книги
Черный дембель. Часть 2

Истинная со скидкой для дракона

Жарова Анита
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Истинная со скидкой для дракона

В погоне за женой, или Как укротить попаданку

Орлова Алёна
Фантастика:
фэнтези
6.62
рейтинг книги
В погоне за женой, или Как укротить попаданку

Ванька-ротный

Шумилин Александр Ильич
Фантастика:
альтернативная история
5.67
рейтинг книги
Ванька-ротный

Новик

Ланцов Михаил Алексеевич
2. Помещик
Фантастика:
альтернативная история
6.67
рейтинг книги
Новик

Адептус Астартес: Омнибус. Том I

Коллектив авторов
Warhammer 40000
Фантастика:
боевая фантастика
4.50
рейтинг книги
Адептус Астартес: Омнибус. Том I

Кодекс Крови. Книга ХI

Борзых М.
11. РОС: Кодекс Крови
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Кодекс Крови. Книга ХI

Идеальный мир для Лекаря 26

Сапфир Олег
26. Лекарь
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 26

…спасай Россию! Десант в прошлое

Махров Алексей
1. Господин из завтра
Фантастика:
альтернативная история
8.96
рейтинг книги
…спасай Россию! Десант в прошлое

Убивать чтобы жить 3

Бор Жорж
3. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 3