Чтение онлайн

на главную - закладки

Жанры

Фейнмановские лекции по гравитации
Шрифт:

Рис. 15.2.

В другом случае был телефонный звонок от него в середине ночи, когда он сказал мне: ”Я знаю, почему все электроны и позитроны имеют одинаковый заряд!” Затем он объяснял мне дальше: ” Все они являются одним и тем же электроном!” Его идея состояла в том, что если один и тот же объект имеет мировую линию, которая является предельна сложной, то когда мы смотрим на него в подпространстве ”сейчас”, мы видим его во многих разных местах (См. рис. 15.2.) Позднее, я оказался способен создать качественную идею такого сорта, путём интерпретации позитрона как существование электрона, чья фаза изменяется обратным образом от времени, и развития упрощённых методов для

вычисления матричных элементов, включающих в себя аннигиляцию и образование пар. Было бы действительно очень замечательно, если бы идея кротовых нор и геометродинамики могла бы быть завершена для того, чтобы усовершенствовать наше понимание Природы, и зная Уилера, мне не кажется невероятным то, что его интуиция может когда-нибудь подтвердиться.

Этими комментариями о проблемах, представляющих значительный интерес в настоящее время, мы заканчиваем обсуждение классической теории гравитации.

Лекция 16

16.1. Связь между полями вещества и гравитацией

В лекции 10 мы выписали члены действия, соответствующие распространению свободных частиц и полей. Всё, что не вошло ранее в полное действие, может быть рассмотрено как взаимодействие между полями, и мы можем приступить к вычислению различных процессов путём использования теории возмущений. В этом случае нет необходимости в том, чтобы оправдываться в использовании возмущений, так как гравитация намного слабее других полей, для которых кажется, что теория возмущений даёт предельно точные предсказания. Известные части общего действия являются следующими:

1

2^2

dx

– g

R

+

1

2

dx

– g

g

,

,

m^2^2

dx

– g

R

^2

.

(16.1.1)

Первое приближение, которое мы сделаем, состоит в том, что мы положим коэффициент равным нулю. Если оставить такой член в действии, то обычно ухудшается ситуация, связанная со многими проблемами расходимости, с которыми мы столкнёмся позже, и в этом случае увеличивается объём вычислений. Поскольку любой выбор этого коэффициента может быть произвольным в нынешнем состоянии искусства эксперимента, мы выбираем значение, которое упрощает вычисления наиболее удобным для нас образом. Второй шаг состоит в том, чтобы вытащить член, представляющий пропагатор этих полей, путём введения разложения

g

=

+

2

h

.

(16.1.2)

После того, как мы записали действие на языке полей h и скалярного материального поля, мы получаем следующее соотношение:

Действие

=

dx

F^2

[h

]

+

dx

I[h

,]

+

(16.1.3)

+

dx

M[]

,

где

F^2[h

]

=

1

2

h

,

h

,

2

h

,

h

,

,

M

=

1

2

,

,

m^2

.

Вариации

функции I по отношению к полям h или представляют члены источника в дифференциальных уравнениях полей. Эти уравнения могут быть записаны в следующем виде в пространственном и импульсном представлениях:

m^2

=-

I

– >

=-

1

(k^2-m^2+i)

I

I

,

– h

,

,

+

h

,

,

+

h

,

,

=

S

,

где

S

=-

1

I

h

.

(16.1.4)

Заметим, что S есть та величина, которую мы называли newT в лекции 6 (см. соотношение (6.1.2)). Что мы должны делать дальше? Из-за тщательного построения первоначального действия как инвариантного интеграла может быть показано, что обыкновенная дивергенция тензора источника S тождественно равна нулю. В импульсном представлении

k

S

=

0.

(16.1.5)

Тензор источника содержит в себе и источники материи, и источники гравитации. Из-за свободы, которую мы имеем в выборе калибровки, мы можем сделать тензор с чертой h бездивергентным и, таким образом, получить решение

k

h

=

0->

k^2

h

=

S

,

h

=

k^2+i

S

.

(16.1.6)

Тензор, стоящий справа, есть не просто тензор неизвестного источника: теперь он хорошо определён на языке первоначального действия (16.1.1) и разложения (16.1.2), так что уравнения являются совместными и энергия сохраняется. Раз у нас есть разложение по степеням константы связи , мы можем, используя обычные правила теории возмущения, приступить к вычислению всех диаграмм каждого заданного порядка . Ключевыми разложениями являются разложение g и разложение g. Первое легко может быть выписано по аналогии с разложением (1+x)^1, когда x есть малая величина. Мы имеем

g

=

+

2

h

^1

=

=

2

h

+

4^2

h

h

3^3

h

h

h

+… ,

(16.1.7)

где необходимо помнить правило суммирования для плоского пространства-времени, как в соотношении (4.1.6). Выражение для разложения -g может быть вычислено посредством манипуляций, описанных в лекции 6. Используя соотношение (6.3.11) при

Поделиться:
Популярные книги

Ворон. Осколки нас

Грин Эмилия
2. Ворон
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Ворон. Осколки нас

Маршал Советского Союза. Трилогия

Ланцов Михаил Алексеевич
Маршал Советского Союза
Фантастика:
альтернативная история
8.37
рейтинг книги
Маршал Советского Союза. Трилогия

Мастер Разума III

Кронос Александр
3. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
5.25
рейтинг книги
Мастер Разума III

Запечатанный во тьме. Том 1. Тысячи лет кача

NikL
1. Хроники Арнея
Фантастика:
уся
эпическая фантастика
фэнтези
5.00
рейтинг книги
Запечатанный во тьме. Том 1. Тысячи лет кача

Боярышня Евдокия

Меллер Юлия Викторовна
3. Боярышня
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Боярышня Евдокия

Ну, здравствуй, перестройка!

Иванов Дмитрий
4. Девяностые
Фантастика:
попаданцы
альтернативная история
6.83
рейтинг книги
Ну, здравствуй, перестройка!

Гарем на шагоходе. Том 1

Гремлинов Гриша
1. Волк и его волчицы
Фантастика:
боевая фантастика
юмористическая фантастика
попаданцы
5.00
рейтинг книги
Гарем на шагоходе. Том 1

Начальник милиции. Книга 4

Дамиров Рафаэль
4. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции. Книга 4

Курсант: назад в СССР

Дамиров Рафаэль
1. Курсант
Фантастика:
попаданцы
альтернативная история
7.33
рейтинг книги
Курсант: назад в СССР

Законы Рода. Том 4

Flow Ascold
4. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 4

Санек 4

Седой Василий
4. Санек
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Санек 4

Мастер Разума VII

Кронос Александр
7. Мастер Разума
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер Разума VII

Пограничная река. (Тетралогия)

Каменистый Артем
Пограничная река
Фантастика:
фэнтези
боевая фантастика
9.13
рейтинг книги
Пограничная река. (Тетралогия)

Владеющий

Злобин Михаил
2. Пророк Дьявола
Фантастика:
фэнтези
8.50
рейтинг книги
Владеющий