Чтение онлайн

на главную - закладки

Жанры

Физика пространства - времени
Шрифт:

г) По определению x=0. Подставляя эту величину в уравнение (39), получим (45).

11. Относительная синхронизация часов

а), б) и в) При x=0 и t=0 формулы преобразования Лоренца дают t'=0 в системе отсчёта любой ракеты. Это верно вне зависимости от того, равны ли нулю y и z или не равны (вопрос б)). Если же t=0, а x/=0, тогда

t'

=-

x

sh

 

r

/=

0

.

Уравнение (46) получается при использовании соответствующих условий (t=0) в уравнениях (37).

г) Чтобы вывести (47), подставим t'=0 в уравнения (36).

д)

Если выбрать в системе ракеты положительное направление оси x' в направлении относительного движения лабораторной системы, то знак в уравнении (47) изменится на обратный, и это уравнение примет тот же вид, что уравнение (46).

е) Чтобы произвести измерения в нескольких разных местах в системе отсчёта ракеты при t'=0 (т.е. одновременно в этой системе), необходимо воспользоваться несколькими часами-хронографами. Лучше было бы употребить выражение: «Пусть часы-хронографы на ракете будут расположены так, чтобы каждые из лабораторных часов были рядом с ними в начальный момент ракетного времени (t'=0), и пусть они сфотографируют в этот момент циферблаты лабораторных часов. Тогда на этих фотографиях не все лабораторные часы будут показывать время t=0».

12.Эвклидовы аналогии

Рис. 140.

а) и б) См. рис. 140. Аналогия проявляется, когда мы сравниваем координаты x эвклидовой системы и лоренцевой системы, а также координаты y эвклидовой системы и t лоренцевой системы. При этом на рис. 140 расстояние xA' меньше, чем расстояние xA, что соответствует различию наблюдаемых длин одного и того же движущегося стержня в системах отсчёта ракеты и лаборатории. Подобным же образом, замедление хода часов аналогично различию между значениями координат yA' и yA в двух эвклидовых системах. В эвклидовой геометрии инвариантом является длина стержня, получаемая из значений координат его концов в любой системе. В лоренцевой геометрии инвариант — это интервал между двумя событиями, получаемый из результатов наблюдений в любой инерциальной системе отсчёта.

Рис. 141.

в) См. рис. 141. Точки, для которых y'=0, не все имеют координату y=0. Подобным же образом, не все события, происшедшие при t'=0, будут иметь координату t=0.

13. Лоренцево сокращение. II

Сосредоточим своё внимание на следующих двух событиях: прохождении концов метрового стержня через начало пространственных координат лабораторной системы. В системе отсчёта ракеты эти события разделены расстоянием минус один метр (минус потому, что лаборатория в системе отсчёта ракеты движется в отрицательном направлении оси x) и временем, равным (1 м)/(относительная скорость):

x'

=-

1

м

.

t'

=

1 м

r

.

В лабораторной системе оба события происходят в одном и том же месте, но разделены отрезком времени t который по условию задачи следует положить равным L/(относительная скорость), где L —«длина» метрового стержня, измеренная таким путём в лабораторной системе отсчёта. Подставляя эти величины в формулы преобразования Лоренца (16), выразим t через относительную

скорость:

t

=

L

r

=

r(-1 м)+(1 м)/r

1-r^2

.

Отсюда

L

=

1-

r

^2

м

,

что и соответствует лоренцеву сокращению, наблюдаемому в лабораторной системе [формула (38)].

14. Замедление хода часов. II

Согласно условию задачи, x'=0, а t'/=0. Расстояние между двумя событиями в лабораторной системе отсчёта можно вычислить по формуле преобразования Лоренца

x

=

0

+

t'

sh

 

r

.

От нас требуется «измерить» время, прошедшее между этими событиями в лабораторной системе, разделив полученное выше расстояние на скорость движения обеих систем друг относительно друга:

t

=

x

r

=

x

th r

=

t'

ch

 

r

Это и есть формула, описывающая замедление хода часов (44).

15. Формулы преобразования Лоренца со временем в секундах

Просто подставим в формулы (37) t=tсек/c и r=vr/c. Обратные преобразования [(36) или (16)] примут тогда вид

x

=

x'

ch

 

r

+

ct

сек

'

sh

 

r

x'+vr tсек'

1-(vr/c)^2

,

t

сек

'

+

v

r

x'

t

сек

=

x'

sh

 

r

+

t

сек

'

ch

 

r

=

c^2

,

c

1-(v

r

/c)^2

16. Вывод формул преобразования Лоренца

Из первого предположения следует условие a+b=e+f, из второго — условие b-a=e-f, а третье предположение даёт r=b/f. В совокупности из полученных трёх условий найдём f/a=1, b/a=e/a=r. Подставляя эти значения коэффициентов в исходные формулы для x и t, запишите условие инвариантности интервала. Отсюда следует a=(1-r^2)^1/^2. Полученные формулы преобразования совпадают с (16).

Поделиться:
Популярные книги

Царь Федор. Трилогия

Злотников Роман Валерьевич
Царь Федор
Фантастика:
альтернативная история
8.68
рейтинг книги
Царь Федор. Трилогия

Маверик

Астахов Евгений Евгеньевич
4. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Маверик

Адвокат Империи 7

Карелин Сергей Витальевич
7. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
альтернативная история
аниме
фантастика: прочее
5.00
рейтинг книги
Адвокат Империи 7

Скандальная свадьба

Данич Дина
1. Такие разные свадьбы
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Скандальная свадьба

Боги, пиво и дурак. Том 6

Горина Юлия Николаевна
6. Боги, пиво и дурак
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 6

Ванька-ротный

Шумилин Александр Ильич
Фантастика:
альтернативная история
5.67
рейтинг книги
Ванька-ротный

Завод: назад в СССР

Гуров Валерий Александрович
1. Завод
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Завод: назад в СССР

Новый Рал 8

Северный Лис
8. Рал!
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Новый Рал 8

Пограничная река. (Тетралогия)

Каменистый Артем
Пограничная река
Фантастика:
фэнтези
боевая фантастика
9.13
рейтинг книги
Пограничная река. (Тетралогия)

Краш-тест для майора

Рам Янка
3. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
эро литература
6.25
рейтинг книги
Краш-тест для майора

Барон меняет правила

Ренгач Евгений
2. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон меняет правила

Последний Паладин

Саваровский Роман
1. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин

Мастер 8

Чащин Валерий
8. Мастер
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Мастер 8

Повелитель механического легиона. Том II

Лисицин Евгений
2. Повелитель механического легиона
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Повелитель механического легиона. Том II