Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть
Шрифт:
Вот как это происходит. Предположим, я зарегистрировался на сайте Sears и провел на нем определенное время за изучением садовой мебели. Если я затем направлюсь в местный магазин Sears и куплю там стол и пару стульев с помощью выданной мне Retailco кредитной карты, то компания может изучить эти данные и заметить, что до этого времени я искал нужную информацию в Сети. Подобный метод известен как «ищем в онлайне, покупаем в офлайне» (research online, buy offline, ROBO). Именно с помощью такого анализа специалисты по онлайновому маркетингу оправдывают свое существование и отслеживают, какие из их предложений работают.
Регистрация – это самый точный способ сбора информации о личности. Она пригодна даже тогда, когда одним компьютером пользуются несколько человек (то есть когда cookie нам уже не помогают). Почему? Дело в том,
Получать еще больше данных
Уверен, вы заметили некие общие черты во всем, о чем мы говорили до настоящего момента. Все это связано с получением данных из источников, которые вы контролируете, – вашего веб-сайта, кассового аппарата, телефонной сети. Все это позволяет вам создать «образ клиента» и помочь выстроить с ним правильное общение. Но в ваших силах собрать еще больше данных.
Внешние базы данных
Зачастую данные можно просто купить. Существует целая отрасль, готовая делиться данными с компаниями, которые хотят лучше знать, с кем имеют дело. Самые серьезные поставщики такой информации расположены в США и Великобритании. Американские агентства, оценивающие кредитные рейтинги, снабжают маркетологов данными, позволяющими не только понять, каким образом потребители расходуют свои деньги, но и насколько хорошо они расплачиваются по долгам. Можно получить доступ и к социально-демографическим данным (о которых я уже говорил ранее); например, американское ведомство, отвечающее за проведение переписи населения, может предоставлять информацию о людях, живущих по определенному индексу.
Компаниям наподобие Claritas удалось скомбинировать эти данные с информацией из других источников и создать детальные профили почтовых индексов. Затем компании удалось превратить эти профили в архетипические сегменты (см. третью главу), привязанные к определенным индексам.
Вновь хочу сказать, что в данных такого рода нет ничего нового. Они были в нашем распоряжении уже многие годы. Я хотел лишь упомянуть о них, чтобы вы – в процессе оценки массы новых инструментов – не забывали и о том, что у вас уже есть.
Помимо этого, существуют списки данных, которые предоставляет любой человек, подписываясь на журнал, газету или информационную рассылку (разумеется, вы всегда вправе запретить компаниям передавать вашу информацию кому-то еще, но обычно это условие печатается самым мелким шрифтом).
Поиск людей во внешних базах данных может иметь для вас огромное значение. Вы начинаете понимать, что нравится вашим клиентам (помимо продуктов, которые они покупают у вас), а это значит, что вы можете сделать свое предложение для них еще более интересным (предположим, у вас есть супермаркет, а ваш клиент любит хорошие вина – и вы предлагаете ему красивые бокалы). Вы можете также найти потенциальных клиентов, которых еще нет в ваших собственных базах данных.
Приведу еще один пример. Мы работали с одним супермаркетом, который только что представил на рынке новую линейку спортивных товаров, состоявшую из действительно хороших продуктов. Однако люди редко ищут качественные спортивные товары в супермаркетах. Поэтому значительная часть аудитории не обратила внимания на это предложение.
Для компании стало крайне важным найти покупателей во внешних базах данных. Мы просканировали рынок в поисках доступной информации. Ниже приведена первая страница списка источников, который компании стоило бы использовать. Каждый из этих источников предлагает компаниям получать за определенную плату доступ к спискам своих клиентов.
Это
Другим источником поиска нужных покупателей служат потребительские панели, допускающие возможность таргетирования. Как было отмечено выше, они могут оказаться крайне полезными для выявления профиля определенной группы. Именно таким образом работают телевизионные рейтинги. Компания Nielsen создала панель из людей, представляющих всю совокупность населения, а затем отслеживает детали, связанные с потреблением телевизионного контента. Большинство панелей анонимны, соответственно, по ним невозможно проводить таргетирование. Существуют и другие, неанонимные панели, предоставляющие отличные возможности для компаний, торгующих потребительскими товарами и не всегда знающих, кто именно покупает у них прохладительные напитки, молоко, хлеб и мыло. Розничным сетям и отдельным супермаркетам удается решить эту проблему с помощью программ лояльности. Исследовательская компания Kantar Retail в партнерстве с рядом супермаркетов получает и обрабатывает информацию о покупках, которая привязана к этим картам. Компания объединяет данные от множества магазинов и выстраивает невероятную по размеру панель из 80 миллионов домохозяйств США. Она отлично знает, какие бренды покупает каждая семья, когда и как часто. Она также представляет, что еще находится в корзине потребителя. Единственное, чего она не знает, – их имен и адресов (эти данные остаются неизвестными для обеспечения должной анонимности). Kantar работает с независимой третьей стороной, которая собирает по магазинам информацию (имя и адрес клиента), затем присваивает каждому новый уникальный «слепой» код, а затем передает данные для обработки Kantar Retail уже с этим анонимным кодом. Таким образом, ребята из Kantar Retail не могут заглянуть в продуктовые пакеты, которые несет домой их сосед!
Несмотря на всю анонимность, доступ к таким данным имеет огромную важность. Например, розничная сеть может обратиться к данным панельного исследования и выявить каждого человека, пьющего спортивные напитки чаще обычного и живущего неподалеку от одного из ее супермаркетов. Это дает продавцу достаточно конкретную группу для дальнейшей работы. Затем он может передать «слепые» коды третьей нейтральной стороне, имеющей право использовать физическое имя и адрес для дальнейшей маркетинговой работы. Это позволяет компаниям, работающим с Kantar, нацеливаться на небольшие сегменты клиентов, сходных между собой с точки зрения покупательского поведения.
Цифровые сети
Мы уже показали, каким образом можно использовать внутренние и внешние базы данных для поиска потенциальных клиентов или выяснения того, на что тратят свое время в Сети крупные группы людей. Теперь же давайте посмотрим, каким образом вы можете выйти на индивидуального потребителя в Интернете.
Предположим, что некая фирма, занимающаяся брокерским обслуживанием в Сети, знает, что посетители сайта CNNMoney.com с большим вниманием относятся к их предложениям. Но при этом очевидно, что не каждый посетитель сайта CNNMoney является для фирмы целевой аудиторией. Так каким же образом она решает, кому показывать свою баннерную рекламу на сайте CNNMoney, а кому – нет? Поскольку за каждое появление баннера фирма платит CNNMoney определенную сумму, то подобный вопрос стоит довольно остро.
И здесь в игру вступает таргетирование в онлайне на индивидуальном уровне – пожалуй, самое интересное направление маркетинга нынешнего дня, ставшее доступным благодаря потрясающим технологическим инновациям. Для того чтобы разобраться с ним в деталях, давайте сделаем шаг назад.
Брокерская интернет-фирма может передавать свои баннеры CNNMoney двумя способами. Первый – компания выходит напрямую на CNN и просит разместить баннеры так, чтобы они появлялись при просмотре пользователями по нескольку раз. Второй вариант состоит в том, чтобы действовать через рекламную сеть (брокера), сопоставляющую спрос на размещение рекламы со стороны этого рекламодателя (и других рекламодателей, работающих в области финансовых услуг) с количеством места на рекламных площадках веб-сайта CNN (издателя).
Душелов. Том 3
3. Внутренние демоны
Фантастика:
альтернативная история
аниме
фэнтези
ранобэ
хентай
рейтинг книги
Возвышение Меркурия. Книга 3
3. Меркурий
Фантастика:
попаданцы
аниме
рейтинг книги
Кодекс Крови. Книга VII
7. РОС: Кодекс Крови
Фантастика:
боевая фантастика
попаданцы
аниме
рейтинг книги
Архил...? 4
4. Архил...?
Фантастика:
фэнтези
попаданцы
альтернативная история
рейтинг книги
Чехов
1. Адвокат Чехов
Фантастика:
фэнтези
боевая фантастика
альтернативная история
рейтинг книги
Переписка 1826-1837
Документальная литература:
публицистика
рейтинг книги
