Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть
Шрифт:
Несмотря на прямолинейность этой схемы, она интереснее, чем может показаться поначалу. Рекламные сети отлично понимают ценность каждого посетителя сайта. Довольно быстро они начали фиксировать каждый случай отправки рекламы человеку, блуждающему по Интернету. В результате они знали, что определенный баннер показывался определенному человеку в определенном месте и в определенное время. Этот лог очень похож на логи баз данных веб-сайтов, описанные выше. Отправляя на компьютеры пользователей cookie, рекламные сети могли отслеживать, кто из них нажимает на рекламную ссылку. А это позволяет им следовать за посетителями с одного сайта на другой.
Предположим, вы зашли на первый сайт, использующий рекламные сети для размещения онлайновой
На баннер вы нажали, но джинсы на этом сайте вам не понравились, и вы переключились на другой сайт, где принялись разглядывать свитеры. Если второй сайт принадлежит той же рекламной сети, что и первый, он распознает содержание cookie на вашем компьютере и сможет показать вам баннер с изображением джинсов другого покроя. Именно это и объясняет, почему порой при переходе с сайта на сайт вас сопровождает баннер одной и той же компании.
Не случайно, что у Google, Yahoo! и Microsoft, владельцев крупнейших сетей, – самые мощные поисковые системы. Этим компаниям удалось создать базы данных, в которых содержатся данные о каждом посетителе, о том, что они искали и какую рекламу видели. Насколько велика вероятность того, что человек нажмет на ваш рекламный баннер или даже купит ваш продукт? Вы правы – довольно большая. Когда потенциальные рекламодатели говорят, что хотят достучаться до людей, желающих получать от жизни только все лучшее (своих потенциальных клиентов), то рекламная сеть настраивает показ баннеров так, что их увидят наиболее подходящие люди. Чем больше рекламодатели тратят на работу с сетью, чем точнее рекламные сети проводят таргетирование, тем выше результативность рекламных объявлений. Вот почему наши столь привлекательные цифры делают большое дело по всему миру для таких компаний, как Google, Yahoo! и Microsoft.
И вот теперь – о самом интересном. Если я представляю брокерскую интернет-фирму, то, вполне очевидно, буду готов заплатить больше за то, чтобы мой баннер был показан компьютеру, пользователь которого с высокой вероятностью может стать моим клиентом. Дорого ли это стоит? Вы можете посчитать сами – расчеты в данном случае довольно просты:
где
A – допустимая цена, то есть максимальная цена, которую компания готова платить за показ своей рекламы определенной персоне;
P(C) – вероятность того, что простой зритель станет держателем карты;
MC – маржа в расчете на одну конверсию, то есть прибыль, которую получает компания от работы с человеком, ставшим держателем карты;
ROI – величина ожидаемой прибыли на инвестиции. Если компания ожидает, что ROI составит три к одному, то цена, которую она готова заплатить (A), будет ниже, чем в случае, если бы ROI составляла два к одному.
Обычно компании довольно хорошо представляют себе величины MC и ожидаемой ROI. Ключевой параметр в приведенном выше уравнении – это P(C), то есть шансы на то, что кто-то подвергнется конверсии.
Согласитесь, было бы здорово, если вы могли бы рассчитать P(C) и допустимую цену для каждого cookie, а затем заплатить лишь за те, которые стоят меньше допустимой цены. Это вполне возможно, и вот как лучше это сделать. Предположим, что и вы, и я завтра зайдем на сайт ESPN.com. Я люблю компьютерные игры, а вы нет. Компания EA Sports выпускает на рынок новый симулятор баскетбольного матча и планирует рекламировать его в онлайне. Эта компания видит, что вы заходите на сайт ESPN.com, и у нее есть возможность разместить свою рекламу в верхней части наиболее часто посещаемых страниц сайта. Это обойдется компании в 5 центов.
Правильным было бы сэкономить деньги и не показывать вам рекламу. Шансы на то, что вы купите игру, довольно невелики – особенно если сравнить вас со мной. Ведь я – и это известно компании – не так давно нажал на один из ее баннеров, связанных с футболом; часто посещаю страницы ESPN, посвященные баскетболу; в течение нескольких последних дней искал билеты на матч с участием New York Knicks. Конечно, EA Sports будет правильнее потратить свои 5 центов на меня.
Условная сумма в 5 центов (или реальная сумма в 3 доллара за одну тысячу показов) может показаться незначительной, но умножьте ее на миллионы ежедневных рекламных показов, и вы поймете, насколько важно выбрать правильную цель: конкретного и подходящего вам человека, а не просто рядового посетителя сайта ESPN.com. Преимущества индивидуального таргетирования очевидны, и многие компании в наши дни идут именно по этому пути. Чтобы это стало возможным, должны были появиться две вещи – возможность обмена рекламными баннерами и развитие системы торгов за показ баннеров в режиме реального времени.
Торги представляют собой борьбу за рынок рекламных мест. В них участвуют издатели (такие как ESPN) и покупатели (такие как EA sports). Торги предназначены и для того, чтобы сделать процесс купли-продажи более гибким, простым и эффективным с помощью технологических решений.
К основным баннерообменным сетям относятся AdECN (принадлежащая Microsoft); Right Media (подразделение Yahoo!); CONTEXTWEB Ad Exchange; а также DoubleClick Ad Exchange (принадлежащая Google). Одно из основных преимуществ обмена рекламой подобного рода связано с тем, что ставки на рекламу устанавливаются в режиме реального времени.
Концепция реального времени достаточно прямолинейна. Давайте вернемся к нашему примеру с посещением страницы ESPN.com. Чтобы упростить ситуацию, представим себе, что на рынке имеются два потенциальных покупателя – EA и BMW (ваши визиты на страницы ESPN.com, посвященные гольфу, повысили показатель P(C) до уровня, заинтересовавшего автопроизводителя). Итак, мы с вами вводим адрес ESPN.com, и рекламный сервер распознает, кто мы такие. Так как вы обладаете большей потенциальной ценностью, чем я, то автопроизводитель (BMW) готов заплатить больше EA, лишь бы только вы увидели его рекламу. Моя же допустимая цена для EA Sports выше, чем готова платить BMW. EA Sports выигрывает торги, и я увижу рекламу ее нового баскетбольного стимулятора. Все это происходит за долю секунды.
Скорее всего ни EA, ни BMW сами не занимаются расчетами допустимой стоимости показа баннера. Для этого они нанимают внешнюю компанию, проводящую расчеты на основании установленных ими параметров. Подобные специализированные подрядчики не только рассчитывают допустимую цену с помощью некоторых описанных выше алгоритмов, но и предсказывают, сколько будут готовы заплатить за показы другие участники рынка. Именно такой тип алгоритма используют брокеры на Уолл-стрит для выбора акций. Бывшие ученые-ракетчики, прежде писавшие алгоритмы для Уолл-стрит, теперь пишут их для баннерообменных сетей. Один из них, зарабатывающий созданием подобных алгоритмов себе на жизнь, рассказал мне, что основная проблема таких предсказаний – угадать, чему может быть равна вторая по размеру ставка, а затем сделать свою ставку всего на доли центов выше. Это имеет немалый смысл.
Душелов. Том 3
3. Внутренние демоны
Фантастика:
альтернативная история
аниме
фэнтези
ранобэ
хентай
рейтинг книги
Возвышение Меркурия. Книга 3
3. Меркурий
Фантастика:
попаданцы
аниме
рейтинг книги
Кодекс Крови. Книга VII
7. РОС: Кодекс Крови
Фантастика:
боевая фантастика
попаданцы
аниме
рейтинг книги
Архил...? 4
4. Архил...?
Фантастика:
фэнтези
попаданцы
альтернативная история
рейтинг книги
Чехов
1. Адвокат Чехов
Фантастика:
фэнтези
боевая фантастика
альтернативная история
рейтинг книги
Переписка 1826-1837
Документальная литература:
публицистика
рейтинг книги
