Чтение онлайн

на главную - закладки

Жанры

КВ-приемник мирового уровня? Это очень просто!
Шрифт:

«Н»: А разве ток потребления зависит от частоты?

«А»: Обязательно… Но я еще не пришел к окончательному выводу относительно того, на основе каких микросхем будет построен предварительный делитель частоты. Ведь обычные ТТЛ здесь не помогут. Не так ли, Спец?

«С»: Безусловно так! Не помогут нам и экономичные ТТЛШ серии 555. Ничего хорошего не принесет и применение ТТЛШ серии 531. Она «недотягивает» по частоте, помимо всего прочего.

«А»: Ну, а как насчет ЭСЛ? Например, серии 500?

«С»: Они потребляют ток около 150–200 мА на корпус! Например, К500ИЕ137 (делитель на 10),

имея максимальную частоту счета 125 МГц, потребляет ток равный 165 мА! И при этом полярность напряжения питания — отрицательная! В то время, как у КМОП — положительная! Следовательно, применение серии 500 нежелательно крайне!

«А»: Имеются новые ТТЛШ серии КР1531, которые вполне способны работать на частотах до 100 МГц. При этом их ток потребления не превышает 45 мА на счетчик!

«С»: Да, именно на этой серии мы и остановились бы… если бы не существовало ЗНАЧИТЕЛЬНО лучшего решения!

«А»: Но я не знаю более подходящей серии!..

«С»: Это серия 193, сравнительно недавно рассекреченная. И в ней имеется микросхема, которая проходит в нашем случае «по всем статьям»! Можно сказать, оптимальная микросхема!

«А»: Как она называется?

«С»: Это K193HE3. Представляет из себя счетчик, коэффициент деления частоты которого (в зависимости от коммутации управляющих входов) может быть выбран равным 10 или 11. Потребление тока не более 20 мА! Частота входных сигналов от 30 до 200 МГц! И при этом на ее счетный вход можно подавать синусоидальный сигнал!

«А»: Потрясающе!..

«С»: Особенно то, что эта схема начинает работать не с нулевой частоты, а с 30 МГц. Тем самым отсекается низкочастотная помеха. Кстати, можем сразу же занести параметры и цоколевку микросхемы K193ME3 в наш справочник.

«Н»: Значит, вопрос с первым делением входной частоты на 10 считаем решенным?

«А»: Ну конечно! Теперь наш сигнал (переведенный в форму прямоугольных импульсов) имеет частоту уже не 85 МГц, а «всего» 8,5 МГц! С такой частотой справятся и ТТЛ, и ТТЛШ — спокойно!

«С»: В качестве второго делителя, действительно можно применить многие типы микросхем. Лично я предпочел бы для этого старую «дубовую» (это на сленге электронщиков — синоним надежности) серию ТТЛ. А именно — К133ИЕ2.

«Н»: Но поскольку, как я понял, подавляющее число микросхем в нашем ЦОУ будет именно КМОП, то почему бы не побеседовать об этом более обстоятельно?

«С»: Предложение принято!.. Итак, прежде всего, запомним, — что аббревиатура КМОП расшифровывается как: комплементарная металл — окисел — полупроводниковая логика. Слово «комплементарный» переводится как «взаимно дополняющий». Так именуют пару транзисторов, сходных по абсолютным значениям параметров, но имеющих различные типы проводимостей. В биполярной технике — это транзисторы р-n-р и n-р-n. А в полевой — транзисторы с р– и n– каналом.

«А»: Следует ли из этого тот вывод, что в последнем случае речь идет об ИНДУЦИРОВАННЫХ каналах?

«С»: Безусловно да! И мы ранее неплохо коснулись этого вопроса. Но теперь я предлагаю рассмотреть работу комплементарного инвертора.

«А»: Я понял в чем дело! На рис. 17.2, а переключатель S1 подает весь «+» источника

напряжения на затворы комплементарной пары. Это напряжение превышает пороговое для n-канального MOS. И он, что совершенно естественно, переходит в состояние насыщения. В то же самое время, этот самый «+» на такую же величину напряжения как бы «отдаляет» пороговое напряжение для р– канального прибора.

Поэтому p-канальный MOS — надежно заперт. И его сопротивление сток-исток чрезвычайно велико. А n-канальный полностью открыт. В результате на выходе потенциал равен НУЛЮ!

«Н»: А если на рис. 17.2, б S2 перевести в противоположное положение, то р– канальный и n– канальный транзисторы, я полагаю, просто поменяются ролями!

«С»: Совершенно верно! А теперь обратим внимание на тот факт, что ситуация на выходе рассмотренного инвертора всегда повторяет ситуацию на его же входе с «точностью до наоборот»!

«Н»: Поэтому инвертор и называется инвертором?

«С»: Ну конечно! Итак, запомним, что в основе ВСЕХ цифровых микросхем КМОП находятся три «логических кирпичика»: И, ИЛИ и коммутационный ключ КК. Ну, а если совсем строго, то И-НЕ; ИЛИ-НЕ и КК!

«Н»: Ну что такое НЕ — я понял. Это ведь ничто иное, как инвертирование сигнала! Так?..

«А»: Точно так! Во всех схемах логики (или цифровых схемах малого уровня интеграции) приняты следующие обозначения. Прямоугольник с выводами, изображенный на рис. 17.3, а, читается как 2И-НЕ, а изображенный на рис. 17.3, б, как 2ИЛИ-НЕ. Означает это тот факт, что уровень логического «0» на выходе (рис. 17.3, а) будет в том случае, если на ОБОИХ входах будет присутствовать уровень логической «1». Что касается элемента, изображенного на рис. 17.3, б то уровень логической «1» будет присутствовать на его выходе в случае, если ИЛИ на первом, ИЛИ на втором входах будет иметь место уровень логического «0». Понятно?

«Н»: Почти… Я не совсем взял в толк, что означает уровень логической «1» и уровень логического «0»?

«С»: Вообще принято, что уровень логической «1» соответствует «высокому» потенциалу, а уровень логического «0», соответственно, «низкому».

«Н»: А какие реально величины уровней характерны для КМОП?

«С»: В отличие от ТТЛ и ЭСЛ, где напряжение питания строго фиксировано (допускается разброс не более 5 процентов), напряжение питания для КМОП-логики варьируется в широких пределах. Так, КМОП серия К176 работоспособна при питающих напряжениях от +5 вольт до +10 вольт. А серия К561 — от +3 до +15 вольт. Это очень удобно, хотя следует учитывать, что при нижних значениях величины напряжения питания, процессы в МОП элементах затягиваются и максимальная рабочая частота падает.

Поделиться:
Популярные книги

Генерал-адмирал. Тетралогия

Злотников Роман Валерьевич
Генерал-адмирал
Фантастика:
альтернативная история
8.71
рейтинг книги
Генерал-адмирал. Тетралогия

Бастард Императора. Том 13

Орлов Андрей Юрьевич
13. Бастард Императора
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Бастард Императора. Том 13

Курсант: Назад в СССР 7

Дамиров Рафаэль
7. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 7

Бастард Императора. Том 11

Орлов Андрей Юрьевич
11. Бастард Императора
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард Императора. Том 11

Мастер Разума

Кронос Александр
1. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
6.20
рейтинг книги
Мастер Разума

Матабар IV

Клеванский Кирилл Сергеевич
4. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар IV

Миллионер против миллиардера

Тоцка Тала
4. Ямпольские-Демидовы
Любовные романы:
современные любовные романы
короткие любовные романы
5.25
рейтинг книги
Миллионер против миллиардера

Газлайтер. Том 9

Володин Григорий
9. История Телепата
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Газлайтер. Том 9

Измена. Мой заклятый дракон

Марлин Юлия
Любовные романы:
любовно-фантастические романы
7.50
рейтинг книги
Измена. Мой заклятый дракон

Возвышение. Земли Ордена

Игнатов Михаил Павлович
17. Путь
Фантастика:
постапокалипсис
уся
фэнтези
фантастика: прочее
сянься
5.00
рейтинг книги
Возвышение. Земли Ордена

Ефрейтор. Назад в СССР. Книга 2

Гаусс Максим
2. Второй шанс
Фантастика:
попаданцы
альтернативная история
7.00
рейтинг книги
Ефрейтор. Назад в СССР. Книга 2

Птичка в академии, или Магистры тоже плачут

Цвик Катерина Александровна
1. Магистры тоже плачут
Фантастика:
юмористическое фэнтези
фэнтези
сказочная фантастика
5.00
рейтинг книги
Птичка в академии, или Магистры тоже плачут

Товарищ "Чума" 5

lanpirot
5. Товарищ "Чума"
Фантастика:
городское фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Товарищ Чума 5

Идеальный мир для Демонолога 2

Сапфир Олег
2. Демонолог
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Демонолога 2