Чтение онлайн

на главную - закладки

Жанры

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров

РАЛЬФ ВИНС РАЛЬФ

Шрифт:

С помощью построчных операций получим единичную матрицу:

Когда вы удаляете строки и столбцы, важно помнить, какие строки каким пере­менным соответствуют, особенно когда таких строк и столбцов несколько. Допу­стим, нам надо найти веса в портфеле при Е = 0,1965. Единичная матрица, кото­рую мы сначала получим, будет содержать отрицательные значения для весов Toxico (X1) и сберегательного счета (Х4). Поэтому вернемся к нашей первоначаль­ной расширенной матрице:

Теперь

удалим строку 3 и столбец 1 (они относятся к Toxico), а также удалим стро­ку 6 и столбец 4 (они относятся к сберегательному счету):

Итак, мы будем работать со следующей матрицей:

С помощью построчных операций получим единичную матрицу:

Решить матрицу можно также с помощью обратной матрицы коэффициентов. Обратная матрица при умножении на первоначальную матрицу дает единичную матрицу. В матричной алгебре матрица часто обозначается выделенной заглавной бук­вой. Например, мы можем обозначить матрицу коэффициентов буквой С. Обрат­ная матрица помечается верхним индексом -1. Обратная матрица к С обозначает­ся как С– 1.Чтобы использовать этот метод, необходимо определить обратную мат­рицу для матрицы коэффициентов. Для этого добавим к матрице коэффициентов единичную матрицу. В примере с 4 акциями:

Используя построчные операции, преобразуем матрицу коэффициентов в еди­ничную матрицу. Так как каждая построчная операция, проведенная слева, будет проведена и справа, мы преобразуем единичную матрицу справа в обратную мат­рицу С– 1.

Теперь мы можем умножить обратную матрицу С– 1 на первоначальный крайний правый столбец, который в нашем случае выглядит следующим образом:

При умножении матрицы на вектор-столбец мы умножаем все элементы первого столбца матрицы на первый элемент вектора, все элементы второго столбца матрицы на второй элемент вектора, и так далее. Если бы вектор был вектор-строка, мы бы умножили все элементы первой строки матрицы на первый элемент вектора, все элементы второй строки матрицы на второй элемент вектора, и так далее. Так как речь идет о векторе-столбце и после­дние четыре элемента нули, нам надо умножить первый столбец обратной матрицы на Е (ожидаемая прибыль портфеля) и второй столбец обратной матрицы на S (сумма весов). Мы получим следующий набор уравнений, в ко­торые можно подставить значения Е и S и получить оптимальные веса.

Матричная алгебра включает в себя гораздо больше тем и приложений, чем было рассмотрено в этой главе. Существуют и другие методы матричной алгебры для ре­шения систем линейных уравнений. Часто вы встретите ссылки на правило Краме­ра, симплекс-метод или симплексную таблицу. Эти методы сложнее, чем методы, описанные в этой главе. Существует множество применений матричной алгебры в бизнесе и науке, мы же затронули ее настолько, насколько необходимо для наших це­лей. Для более подробного изучения матричной алгебры и ее применений в бизнесе и науке рекомендую прочитать книгу «Множества, матрицы и линейное программи­рование» Роберта Л. Чилдресса (Sets, Matrices, and Linear Programming, by Robert L. Childress). Следующая глава посвящена методам, уже рассмотренным в этой главе, приме­нительно к любому торгуемому инструменту с использованием оптимального f и ме­ханических систем.

Глава 7

Геометрия портфелей

Мы уже познакомились с несколькими способами расчета опти­мального f для рыночных систем. Также мы

знаем, как найти эф­фективную границу. В этой главе мы покажем, как объединить идею оптимального f и идею эффективной границы для получения действительно эффективного портфеля, геометрический рост которого максимален. Мы также коснемся геометрии портфеля.

Линии рынка капитала (Capital Market Lines — CMLs)

Из предыдущей главы мы узнали, как параметрически вывести эффективную гра­ницу. Мы можем улучшить любой портфель путем инвестирования определенной его доли в наличные (или, что то же самое, в беспроцентный вклад). Рисунок 7-1 демонстрирует эту ситуацию графически.

На рисунке 7-1 точка А отражает прибыль по безрисковым активам. Мы будем считать, что это прибыль по 91-дневным казначейским обязательствам. Так как риск в данном случае (стандартное отклонение прибылей) отсутствует, точка А находится на нуле по горизонтальной оси.

Рисунок 7-1 Увеличение прибылей с помощью безрисковых активов

Точка В соответствует касательному портфелю. Это единственный портфель, ле­жащий на эффективной границе, которого коснется линия, проведенная из точки с координатой: безрисковая ставка прибыли на вертикальной оси и ноль на гори­зонтальной оси. Любая точка на отрезке АВ соответствует портфелю из точки В в комбинации с безрисковыми активами. В точке В все средства вложены только в портфель, а в точке А только в безрисковые активы. Любая точка между А и В со­ответствует определенной комбинации, когда часть активов находится в портфе­ле, а часть в безрисковых активах. Отметьте, что портфель на отрезке АВ более выгоден, чем любой портфель на эффективной границе при том же уровне риска, так как, находясь на отрезке АВ, он имеет более высокую прибыль при том же

уровне риска. Таким образом, инвестору, который хочет получить менее риско­ванный портфель, чем портфель В, следует инвестировать средства в портфель В и в безрисковые активы, а не смещаться по эффективной границе в точку с мень­шим риском. Линия, выходящая из точки А безрискового уровня на вертикальной оси и нуля на горизонтальной оси и касающаяся в одной точке эффективной границы, называется линией рынка капитала (CML). Справа от точки В линия CML пред­ставляет портфели, где инвестор занимает средства для инвестирования в порт­фель В. Отметьте, что инвестору, который хочет получить большую прибыль, чем дает портфель В, следует поступить именно таким образом, поскольку портфели на линии CML справа от точки В дают более высокую прибыль, чем портфели на эффективной границе при том же уровне риска. Как правило, В — очень хорошо диверсифицированный портфель. Большинство портфелей, расположенных справа сверху и слева снизу на эффективной границе, имеют очень мало компо­нентов, портфели в середине эффективной границы, где проходит касательная, достаточно хорошо диверсифицированы. Традиционно считается, что все разумные инвесторы хотят получить макси­мальную прибыль при данном риске и принять наименьший риск при заданной прибыли. Таким образом, все инвесторы хотят быть где-то на линии CML. Дру­гими словами, все инвесторы хотят держать один и тот же портфель, но с раз­личной долей заемных средств. Данное различие между инвестиционным реше­нием и инвестированием с использованием заемных средств известно как тео­рема разделения. Мы будем исходить из того, что вертикальная шкала (Е в теории Е — V) выра­жает арифметическое среднее HPR (AHPR) для портфелей, а горизонтальная шкала (V) отражает стандартное отклонение HPR. Для заданной безрисковой ставки мы можем определить, где находится касательный портфель на нашей эф­фективной границе, так как его координаты (AHPR, V) максимизируют следую­щую функцию:

(7.0 la) Касательный портфель = MAX{(AHPR - (1 + RFR)) / SD},

где МАХ{} = максимальное значение;

AHPR =арифметическое среднее HPR, т. е. координата Е данного портфеля на эффективной границе;

SD = стандартное отклонение HPR, т. е. координата V данного портфеля на эффективной границе;

RFR== безрисковая ставка (risk-free rate).

В уравнении (7.0la) формула внутри скобок ({}) представляет собой отношение Шарпа. Отношение Шарпа для портфеля — это отношение ожидаемых избыточ­ных значений прибыли к стандартному отклонению. Портфель с наибольшим отношением Шарпа является портфелем, где линия CML касается эффективной границы при данном значении RFR.

Поделиться:
Популярные книги

Блуждающие огни 2

Панченко Андрей Алексеевич
2. Блуждающие огни
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
альтернативная история
фэнтези
5.00
рейтинг книги
Блуждающие огни 2

Мастер Разума II

Кронос Александр
2. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
5.75
рейтинг книги
Мастер Разума II

Измена. Не прощу

Леманн Анастасия
1. Измены
Любовные романы:
современные любовные романы
4.00
рейтинг книги
Измена. Не прощу

Эволюционер из трущоб. Том 7

Панарин Антон
7. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб. Том 7

Титан империи

Артемов Александр Александрович
1. Титан Империи
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Титан империи

Идеальный мир для Лекаря 22

Сапфир Олег
22. Лекарь
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 22

Барин-Шабарин 2

Гуров Валерий Александрович
2. Барин-Шабарин
Фантастика:
попаданцы
альтернативная история
фэнтези
5.00
рейтинг книги
Барин-Шабарин 2

Невеста снежного демона

Ардова Алиса
Зимний бал в академии
Фантастика:
фэнтези
6.80
рейтинг книги
Невеста снежного демона

Чиновникъ Особых поручений

Кулаков Алексей Иванович
6. Александр Агренев
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Чиновникъ Особых поручений

Связанные Долгом

Рейли Кора
2. Рожденные в крови
Любовные романы:
современные любовные романы
остросюжетные любовные романы
эро литература
4.60
рейтинг книги
Связанные Долгом

Целительница моей души

Чекменёва Оксана
Любовные романы:
любовно-фантастические романы
7.29
рейтинг книги
Целительница моей души

Кодекс Охотника. Книга X

Винокуров Юрий
10. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
6.25
рейтинг книги
Кодекс Охотника. Книга X

Седьмая жена короля

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Седьмая жена короля

Академия проклятий. Книги 1 - 7

Звездная Елена
Академия Проклятий
Фантастика:
фэнтези
8.98
рейтинг книги
Академия проклятий. Книги 1 - 7