Чтение онлайн

на главную - закладки

Жанры

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров

РАЛЬФ ВИНС РАЛЬФ

Шрифт:

Порог геометрической торговли для портфелей

Теперь обратимся к проблеме нахождения порога геометрической торговли для данной комбинации оптимального портфеля. Проблема легко решается, если разделить порог геометрической торговли для каждого компонента на его вес в оптимальном портфеле так же, как мы делили оптимальные f компонентов на их соответствующие веса для получения нового значения, справедливого для компо­нентов оптимального портфеля. Допустим, порог геометрической торговли для Toxico составляет 5100 долларов. Разделив данное значение на его вес в оптималь­ном портфеле, т.е. на 1,025982, мы получим новый измененный порог геометри­ческой торговли:

Порог =$5100/1,025982= $4970,85

Так как вес для Toxico больше 1, то его оптимальное f и порог геометрической тор­говли уменьшатся, поскольку мы делим их значения на этот вес. Если нельзя тор­говать дробной

единицей Toxico, мы перейдем на 2 единицы, когда баланс повы­сится до 4970,85 доллара. Вспомните, что наше новое измененное значение f в оптимальном портфеле для Toxico равно 2436,69 доллара ($2500 / 1,025982). Так как данная сумма, умноженная на два, равна 4873,38 доллара, нам следует перейти на торговлю двумя контрактами в этой точке. Однако порог геометрической торговли, который больше чем в два раза превышает величину f в долларах, говорит о том, что не стоит переходить на торговлю 2 единицами до тех пор, пока баланс не достигнет порога геометрической торговли, равного 4970,85 доллара.

Если вы приводите данные к текущим ценам и получаете приведенное опти­мальное f и его побочные продукты, включая порог геометрической торговли, тогда оптимальное f в долларах и порог геометрической торговли будут меняться ежедневно в зависимости от цены закрытия предыдущего дня на основании урав­нения (2.11).

Подведение итогов

Отметим важный факт: структура неограниченного портфеля (для которого сум­ма весов больше 1, a NIC является частью портфеля) неизменна для любого уров­ня Е; единственным отличием является величина заемных средств (величина ры­чага). Для портфелей, лежащих на эффективной границе, когда сумма весов огра­ничена, это не так. Другими словами, для любой точки на неограниченных эффективных границах (AHPR или GHPR) отношения весов различных рыноч­ных систем всегда одинаковы.

Например, можно рассчитать отношения весов между различными рыночными системами в геометрическом оптимальном портфеле. Отношение Toxico к Incubeast составляет: 102,5982% / 49,00558% = 2,0936. Таким же образом мы можем опре­делить отношения всех компонентов в портфеле друг к другу:

Toxico / Incubeast = 2,0936

Toxico / LA Garb = 2,5490

Incubeast / LA Garb = 1,2175

Теперь вернемся к неограниченному портфелю и найдем веса для различных зна­чений Е. Далее следуют веса компонентов неограниченных портфелей, которые имеют самые низкие дисперсии для данных значений Е. Заметьте, что отношения весов компонентов одинаковы:

E=0,1 Е=0,3
Toxico 0,4175733 1,252726
Incubeast 0,1994545 0,5983566
LA Garb 0,1638171 0,49145

Таким образом, мы можем утверждать, что эффективные границы портфелей с неограниченной суммой весов содержат одинаковые портфели с разным уровнем за­емных средств (с разным плечом). Портфель, в котором меняется величина плеча для получения заданного уровня прибыли Е, когда снято ограничение суммы весов, будет иметь второй множитель Лагранжа, равный нулю, при сумме весов, равной 1. Теперь мы можем достаточно просто определить, каким будет наш неограни­ченный геометрический оптимальный портфель. Сначала найдем портфель, который имеет нулевое значение для второго множителя Лагранжа, когда сумма весов ограничена 1,00. Одним из способов поиска такого портфеля является процесс итераций. Получившийся в результате портфель поднимается (или опускается) рычагом в зависимости от выбранного Е для неограниченного пор­тфеля. Значение Е, удовлетворяющее любому уравнению с (7.06а) по (7.06г), и будет тем значением, которое соответствует неограниченному геометрическому оптимальному портфелю. Для выбора геометрического оптимального портфеля на эффективной границе AHPR для портфелей с неограниченными весами, можно использовать первый множитель Лагранжа, который определяет поло­жение портфеля на эффективной границе. Вспомните (см. главу 6), что одним из побочных продуктов при определении состава портфеля методом элементар­ных построчных преобразований является первый множитель Лагранжа. Он выражает мгновенную скорость изменения дисперсии по отношению к ожидае­мой прибыли (с обратным знаком).

Первый множитель Лагранжа, равный - 2, означает, что в этой точке дисперсия изменяется по отношению к ожидаемой прибыли со скоростью 2. В результате, мы получим портфель, который геомет­рически оптимален.

(7.06д) L1 = - 2,

где L1 = первый множитель Лагранжа данного портфеля на эффективной границе AHPR для портфелей с неограниченной суммой весов [27] .

Теперь объединим эти концепции вместе. Портфель, который с помощью рычага перемещается вдоль эффективных границ (арифметических или геометрических) портфелей с неограниченной суммой весов, является касательным портфелем к ли­нии CML, выходящей из RFR == 0, когда сумма весов ограничена 1,00 и NIC не ис­пользуется. Итак, мы можем найти неограниченный геометрический оптимальный порт­фель путем поиска касательного портфеля для RFR = 0, когда сумма весов огра­ничена 1,00, а затем поднять рычагом полученный портфель до точки, где он ста­новится геометрическим оптимальным. Но как определить, насколько повысить данный ограниченный портфель, чтобы сделать его эквивалентным неограни­ченному геометрическому оптимальному портфелю?

27

Таким образом, мы можем утверждать, что геометрический оптимальный портфель — это портфель, в котором второй множитель Лагранжа равен 0, когда сумма весов ограничена единицей, а в том случае, когда сумма весов не ограничена, первый множитель Лагранжа равен - 2. Такой портфель, при снятии ограничений на сумму весов, также будет иметь второй множитель Лагранжа, равный 0.

Вспомните, что касательный портфель находится на эффективной грани­це (арифметической или геометрической) портфелей с ограниченной сум­мой весов в точке с наивысшим отношением Шарпа (уравнение (7.01)). Мы просто повысим рычагом этот портфель и умножим веса каждого из его ком­понентов на переменную, называемую q, которую можно получить следую­щим образом:

(7.13) q=(E-RFR)/V,

где Е = ожидаемая прибыль (арифметическая) касательного портфеля;

RFR = безрисковая ставка, по которой вы можете занять или дать взай­мы;

V= дисперсия касательного портфеля.

Уравнение (7.13) является достаточно хорошим приближением реального опти­мального q.

Следующий пример может проиллюстрировать роль оптимального q. Вспом­ните, что наш неограниченный геометрический оптимальный портфель выгля­дит так:

Компонент Вес
Toxico 1,025955
Incubeast 0,4900436
LA Garb 0,4024874

Портфель имеет AHPR= 1,245694 и дисперсию 0,2456941. В оставшейся час­ти нашего обсуждения мы будем исходить из того, что RFR = 0 (в данном слу­чае отношение Шарпа этого портфеля, (AHPR-(1 + RFR)) / SD, равно 0,49568).

Теперь, если мы введем те же прибыли, дисперсии и коэффициенты корреляции компонентов в матрицу и рассчитаем, какой портфель находится в точке касания при RFR = 0, когда сумма весов ограничена 1,00 и при отсутствии NIC, то полу­чим следующий портфель:

Компонент Вес
Toxico 0,5344908
Incubeast 0,2552975
LA Garb 0,2102117

Этот портфель имеет AHPR = 1,128, дисперсию 0,066683 и отношение Шарпа 0,49568. Отметьте, что отношение Шарпа касательного портфеля, для которого сумма весов ограничена 1,00, при отсутствии NIC, в точности равно отноше­нию Шарпа для нашего неограниченного геометрического оптимального портфе­ля. Вычитая единицу из полученных AHPR, мы получаем арифметическую среднюю прибыль портфеля. Далее заметим: чтобы для ограниченного каса­тельного портфеля получить прибыль, равную прибыли неограниченного геометрического оптимального портфеля, мы должны умножить веса первого на 1,9195.

Поделиться:
Популярные книги

На границе империй. Том 10. Часть 5

INDIGO
23. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 5

На границе империй. Том 10. Часть 3

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 3

Переиграть войну! Пенталогия

Рыбаков Артем Олегович
Переиграть войну!
Фантастика:
героическая фантастика
альтернативная история
8.25
рейтинг книги
Переиграть войну! Пенталогия

Жена моего брата

Рам Янка
1. Черкасовы-Ольховские
Любовные романы:
современные любовные романы
6.25
рейтинг книги
Жена моего брата

Мальчик из будущего

Поселягин Владимир Геннадьевич
1. Мальчик из будущего
Фантастика:
героическая фантастика
попаданцы
5.59
рейтинг книги
Мальчик из будущего

Ученик

Первухин Андрей Евгеньевич
1. Ученик
Фантастика:
фэнтези
6.20
рейтинг книги
Ученик

На границе империй. Том 7. Часть 3

INDIGO
9. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.40
рейтинг книги
На границе империй. Том 7. Часть 3

Шаг в бездну

Муравьёв Константин Николаевич
3. Перешагнуть пропасть
Фантастика:
фэнтези
космическая фантастика
7.89
рейтинг книги
Шаг в бездну

Госпожа Доктор

Каплунова Александра
Фантастика:
попаданцы
фэнтези
5.00
рейтинг книги
Госпожа Доктор

Антимаг его величества. Том II

Петров Максим Николаевич
2. Модификант
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Антимаг его величества. Том II

Лейб-хирург

Дроздов Анатолий Федорович
2. Зауряд-врач
Фантастика:
альтернативная история
7.34
рейтинг книги
Лейб-хирург

Ваше Сиятельство 4т

Моури Эрли
4. Ваше Сиятельство
Любовные романы:
эро литература
5.00
рейтинг книги
Ваше Сиятельство 4т

Бастард

Осадчук Алексей Витальевич
1. Последняя жизнь
Фантастика:
фэнтези
героическая фантастика
попаданцы
5.86
рейтинг книги
Бастард

Случайная свадьба (+ Бонус)

Тоцка Тала
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Случайная свадьба (+ Бонус)