Чтение онлайн

на главную - закладки

Жанры

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров

РАЛЬФ ВИНС РАЛЬФ

Шрифт:

Так в общих чертах можно описать современную стратегию создания порт­феля. Но это не совсем оптимальный вариант, и в этом состоит одна из основ­ных идей книги. Вместо определения ожидаемой прибыли и дисперсии прибы­ли на основе текущей цены компонента, ожидаемая прибыль и дисперсия при­былей для каждого компонента должны определяться на основе долларового оптимального f. Другими словами, в качестве входных данных вы должны ис­пользовать арифметическое среднее HPR и дисперсию HPR. Используемые HPR должны быть привязаны не к количеству сделок, а к фиксированным ин­тервалам времени (дни, недели, месяцы, кварталы или годы), как в главе 1 для уравнения (1.15).

где А = сумма

в долларах, выигранная или проигранная в этот день;

В = оптимальное f в долларах.

Не обязательно использовать дневные данные, можно использовать любой вре­менной период, при условии, что он одинаковый для всех компонентов портфеля (тот же временной период должен использоваться для определения коэффициен­тов корреляции между HPR различных компонентов). Скажем, рыночная систе­ма с оптимальным f= 2000 долларов за день заработала 100 долларов. Тогда для такой рыночной системы дневное HPR = 1,05.

Если вы рассчитываете оптимальное f на основе приведенных данных, то для получения дневных HPR следует использовать уравнение (2.12);

где D$ = изменение цены 1 единицы в долларах по сравнению с прошлым днем, т.е. (закрытие сегодня - закрытие вчера) * доллары за пункт;

f$ = текущее оптимальное f в долларах, рассчитанное из уравнения (2.11). Здесь текущей ценой является зак­рытие последнего дня.

После того как вы определите оптимальное f в долларах для 1 единицы компонен­та, надо взять дневные изменения баланса на основе 1 единицы и преобразовать их в HPR с помощью уравнения (1.15). Если вы используете приведенные дан­ные, воспользуйтесь уравнением (2.12). Когда вы комбинируете рыночные систе­мы в портфеле, все они должны иметь одинаковый формат, т.е. если данные при­ведены к текущим ценам, то оптимальные f и побочные продукты также должны быть приведенными.

Вернемся к арифметическому среднему HPR. Вычитая единицу из арифмети­ческого среднего, мы получим ожидаемую прибыль компонента. Дисперсия дневных (недельных, месячных и т.д.) HPR даст исходную дисперсию для матри­цы. Наконец, для каждой пары рассматриваемых рыночных систем рассчитаем коэффициенты корреляции между дневными HPR.

Теперь можно сделать важное заключение. Портфели, параметры которых (ожидаемые прибыли, дисперсия ожидаемых прибылей и коэффициенты корреляции ожидаемых прибылей) выбраны на основе текущей цены компонента, не будут ис­тинно оптимальными портфелями. Для определения истинно оптимального портфе­ля следует использовать входные параметры, основанные на торговле 1 единицей при оптимальном/для каждого компонента. Вы не можете быть ближе к пику кривой оптимального f, чем само оптимальное f. Рассчитывая параметры из текущей ры­ночной цены компонента, вы выбираете параметры произвольно, следовательно, они не обязательно оптимальны.

Вернемся к вопросу о том, каким образом возможно инвестировать больше 100% в определенный компонент. Одно из основных утверждений этой книги со­стоит в том, что вес и количество не одно и то же. Вес, который вы получаете при нахождении геометрического оптимального портфеля, должен быть отражен в оптимальных f компонентов портфеля. Для этого следует разделить оптимальное f каждого компонента на его соответствующий вес. Допустим, у нас есть следую­щие оптимальные f (в долларах):

Toxico $2500

Incubeast $4750

LA Garb $5000

(Отметьте, что если вы приводите данные к текущей цене и, следовательно, полу­чаете приведенное оптимальное f и побочные продукты, тогда ваше оптимальное f в долларах будет меняться каждый день в зависимости от цены закрытия преды­дущего дня на основании уравнения [2.11].)

Теперь разделим f на соответствующие веса:

Toxico $2500 / 1,025982 = $2436,69

Incubeast $4750 / 0,4900558 = $9692,77

LA Garb $5000 / 0,4024979 = $12 422,43

Таким образом, используя новые «отрегулированные» значения f, мы получаем гео­метрический оптимальный портфель. Допустим, Toxico представляет определен­ную рыночную систему. Торгуя 1 контрактом в этой рыночной системе на каждые 2436,69 долларов на счете (и поступая таким же образом с новыми

отрегулирован­ными значениями f других рыночных систем), мы будем торговать геометричес­ким оптимальным неограниченным портфелем. Если Toxico является акцией и мы считаем 100 акций «I контрактом», то следует торговать 100 акциями Toxico на каждые 2436,99 доллара на балансе счета. Пока мы не будем учитывать залоговые средства. В следующей главе мы рассмотрим проблему требований к залоговым средствам.

«Минутку, — можете возразить вы. — Если мы изменим оптимальный порт­фель посредством оптимального f, будет ли он оптимальным. Если новые значе­ния относятся к другому портфелю, то ему соответствует другая координата при­были, и он может не оказаться на эффективной границе».

Заметьте, мы не изменяем значения f. Мы просто сокращаем расчеты, и это выглядит так, как будто значения f изменяются. Мы создаем оптимальные порт­фели, основываясь на ожидаемых прибылях и дисперсии прибылей при торгов­ле одной единицей каждого компонента, а также на коэффициентах корреля­ции. Таким образом, мы получаем оптимальные веса (оптимальный процент счета для торговли каждым компонентом). Поэтому, если рыночная система имеет оптимальное f = 2000 долларов и ее вес в оптимальном портфеле равен 0,5, мы должны использовать для этой рыночной системы 50% счета при пол­ном оптимальном f= 2000 долларов. Это то же самое, что торговать 100% наше­го счета при оптимальном f, деленном на оптимальный вес, т.е. ($2000 /0,5) = $4000. Другими словами, торговать оптимальным f= 2000 долларов на 50% счета, по сути, то же самое, что и торговать измененным f= 4000 долларов на 100% счета.

AHPR и SD, которые вы вводите в матрицу, определяются из значений опти­мального f в долларах. Если речь идет об акциях, то можно рассчитать значения AHPR, SD и оптимального f на основе одной акции или, например, 100 акций, вы сами определяете размер одной единицы.

В ситуации, когда нет рычага (например, портфель акций без заемных средств), вес и количество одно и то же. Однако в ситуации с рычагом (например, портфель фьючерсных рыночных систем), вес и количество отличаются. Идея, которая была впервые изложена в книге «Формулы управления портфелем», состо­ит в том, что мы пытаемся найти оптимальное количество, и оно является функци­ей оптимальных весов. Когда мы рассчитываем коэффициенты корреляции HPR двух рыночных сис­тем с положительными арифметическими математическими ожиданиями, то чаще всего получаем положительные значения. Это происходит потому, что кривые баланса рыночных систем (совокупная текущая сумма дневных измене­ний баланса) стремятся вверх и вправо. Проблема решается следующим обра­зом: для каждой кривой баланса надо определить линию регрессии методом наименьших квадратов (до приведения к текущим ценам, если оно применяет­ся) и рассчитать разность кривой баланса и ее линии регрессии в каждой точке. Затем следует преобразовать уже лишенную тренда кривую баланса в простые дневные изменения баланса. После этого вы можете привести данные к теку­щим ценам (когда это необходимо). Далее, рассчитайте корреляцию по этим уже обработанным данным. Предложенный метод работает в том случае, если вы используете корреляцию дневных изменений баланса, а не цен. Если вы будете использовать цены, то мо­жете получить искаженную картину, хотя очень часто цены и дневные изменения баланса взаимосвязаны (например, в системе пересечения долгосрочной скользя­щей средней). Метод удаления тренда следует всегда применять аккуратно. Разу­меется, дневное AHPR и стандартное отклонение HPR должны всегда рассчиты­ваться по данным, из которых не удален тренд.

Последняя проблема, которая возникает, когда вы удаляете тренд из данных, ка­сается систем, в которых сделки совершаются достаточно редко. Представьте себе две торговые системы, каждая из которых инициирует одну сделку в неделю, причем в разные дни. Коэффициент корреляции между ними может быть только незначи­тельно положительным. Однако когда мы лишаем данные тренда, то получаем очень высокую положительную корреляцию, поскольку их линии регрессии не­много повышаются каждый день, хотя большую часть времени изменение баланса равно нулю. Поэтому разность будет отрицательной. Преобладание дней с незначи­тельной отрицательной разностью между кривой баланса и линией регрессии в обе­их рыночных системах в результате дает неоправданно высокую положительную корреляцию.

Поделиться:
Популярные книги

Наследник чародея. Школяр. Книга первая

Рюмин Сергей
1. Наследник чародея
Фантастика:
городское фэнтези
5.00
рейтинг книги
Наследник чародея. Школяр. Книга первая

Проданная невеста

Wolf Lita
Любовные романы:
любовно-фантастические романы
5.80
рейтинг книги
Проданная невеста

Гардемарин Ее Величества. Инкарнация

Уленгов Юрий
1. Гардемарин ее величества
Фантастика:
городское фэнтези
попаданцы
альтернативная история
аниме
фантастика: прочее
5.00
рейтинг книги
Гардемарин Ее Величества. Инкарнация

Черт из табакерки

Донцова Дарья
1. Виола Тараканова. В мире преступных страстей
Детективы:
иронические детективы
8.37
рейтинг книги
Черт из табакерки

Новый Рал 9

Северный Лис
9. Рал!
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Новый Рал 9

Росток

Ланцов Михаил Алексеевич
2. Хозяин дубравы
Фантастика:
попаданцы
альтернативная история
фэнтези
7.00
рейтинг книги
Росток

Пять попыток вспомнить правду

Муратова Ульяна
2. Проклятые луной
Фантастика:
фэнтези
эпическая фантастика
5.00
рейтинг книги
Пять попыток вспомнить правду

Александр Агренев. Трилогия

Кулаков Алексей Иванович
Александр Агренев
Фантастика:
альтернативная история
9.17
рейтинг книги
Александр Агренев. Трилогия

Наследник с Меткой Охотника

Тарс Элиан
1. Десять Принцев Российской Империи
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Наследник с Меткой Охотника

Хозяйка старой пасеки

Шнейдер Наталья
Фантастика:
попаданцы
фэнтези
7.50
рейтинг книги
Хозяйка старой пасеки

Выйду замуж за спасателя

Рам Янка
1. Спасатели
Любовные романы:
современные любовные романы
7.00
рейтинг книги
Выйду замуж за спасателя

Искатель 2

Шиленко Сергей
2. Валинор
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Искатель 2

Мастер Разума III

Кронос Александр
3. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
5.25
рейтинг книги
Мастер Разума III

Родословная. Том 2

Ткачев Андрей Юрьевич
2. Линия крови
Фантастика:
городское фэнтези
аниме
фэнтези
5.00
рейтинг книги
Родословная. Том 2