Чтение онлайн

на главную - закладки

Жанры

Мистерия пирамид. Тайна Сфинкса.

Макнэлли Роберт А.

Шрифт:

Курт Мендельсон, физик, слушавший в свое время лекции Макса Планка и Альберта Эйнштейна в Берлинском университете и сам являющийся автором ряда работ по физике низких температур и преобразованию элементов, также проявлял интерес к Великой пирамиде, выдвинув собственную версию этой теории об определении числа я практическим путем. Мендельсон предположил, что древние египтяне измеряли высоту и расстояние в разных единицах. Высоту, по его мнению, они определяли в локтях из расчета 1 локоть = 28 пальцам. Горизонтальное же расстояние измерялось в круговых локтях. Строители пирамиды создали специальный цилиндр, диаметр которого был равен 1 локтю, и отсчитывали круговые локти, равные 1 обороту этого цилиндра.

Давайте рассмотрим гипотезу Мендельсона с математической точки зрения. Отношение высоты к длине стороны, составляющее 2:1, означает, что расчетная

высота Великой пирамиды была равна 280 локтям, а длина стороны - 140 круговым локтям. При этом длина стороны должна была составлять 140 х π, или 439,8 локтя. Согласно этой версии, h =280 локтей, а а = 70 круговых локтей, так что h/a = 280/(70π) = 4/π. А это -точно такое же значение, которое дает гипотеза о числе я, но оно открыто древними египтянами случайно, а не получено в результате понимания математических принципов.

Наиболее серьезный недостаток гипотезы Мендельсона - отсутствие фактических доказательств. Нет никаких данных о том, что египтяне эпохи Древнего царства использовали различные единицы измерений: локоть для высоты и круговой цилиндр, который якобы являлся их основной мерой длины по горизонтали. Отсутствие доказательств - это лишь первая из трех проблем, служащих препятствием для признания современной гипотезы секед.

Математик Роджер Герц-Фишлер, единственный ученый, который специально изучал вопрос о секед, сообщает, что его исследования литературы по археологии не смогли обнаружить реальных доказательств того, что египтяне эпохи времен IV династии действительно использовали принцип секед как архитектурный и строительный прием. Они могли использовать его, но не существует никаких убедительных свидетельств того, что они это реально делали.

Из-за отсутствия доказательств современные египтологи, отстаивающие гипотезу о принципе секед, исходят из допущения, что знания, которыми обладали египтяне времен XII династии, были доступны и для египтян эпохи IV династии. Они игнорируют как несущественный резкий упадок культурных и интеллектуальных элементов, которым сопровождался крах Древнего царства и постепенное формирование Среднего царства, происходившее в атмосфере политической анархии и социального хаоса. Сравните постройки эпохи Среднего царства с сооружениями Древнего царства, и вы сразу же заметите очевидный упадок эстетических принципов и строительных приемов. Тот же самый взлет и упадок, по всей видимости, был характерен и для интеллектуальной жизни египтян.

Давайте вспомним, что происходило в Европе в эпоху поздней античности и Средневековья. Хотя художественные создания и интеллектуальные достижения Древней Греции и Рима сегодня являются основополагающей базой европейской цивилизации, Европа полностью утратила живой контакт с наследием греческих и римских классиков в период так называемых темных веков, последовавших за гибелью и распадом Римской империи в V в. н.э. И если бы не последовавшее в эпоху Крестовых походов установление связей с арабскими интеллектуалами, которые продолжали изучать греческих авторов, и не возвращение из забвения классических латинских текстов, хранившихся в монастырях Ирландии, где их переписывали на протяжении многих веков, современные европейцы вполне могли бы и не знать, кто такие Цицерон или Аристотель.

Не исключено, что нечто подобное произошло и в Древнем Египте. Египтяне эпохи Среднего царства вполне могли утратить знание числа π, которым обладали их предки эпохи Древнего царства, и создать в качестве его замены принцип секед.

Гипотеза о правиле секед невольно побуждает нас выказать интригующее предположение: число я было не единственной математической константой, известной египтянам эпохи Древнего царства.

Золотое сечение

Эту константу с эпохи Возрождения принято называть принципом золотого сечения, или ф (фи), ф - это не число, которое можно вычислить арифметическим путем, а параметр, определяемый с помощью компаса и линейки. Во-первых, проведем линию, условно называемую АС. Затем разделим АС в точке В таким образом, что АС/ВС = АВ/ВС. Другими словами, отношение всей длины этой линии к большему ее отрезку точно такое же, как и отношение большего отрезка к меньшему. Оба отношения выражаются величиной ф, которая составляет 1,618033988749895... Эту иррациональную и бесконечную величину называют по-разному: золотое сечение, золотая середина, первичное сечение, Божественная пропорция. Ф можно наглядно показать с помощью геометрии

квадрата. Возьмем квадрат, сторона которого равна 1, и разделим его пополам от одной противолежащей стороны до другой. У нас получатся два прямоугольника 1 х ( 1/2). Диагональ одного из этих прямоугольников плюс 1/2 и будет равна ф. Давайте обозначим эту диагональ как Wu применим в отношении ее теорему Пифагора. Теперь мы знаем отношение W к двум другим сторонам: W2 = 12 + (1 /2)2. Эту формулу можно записать и как W2 = 1,25; таким образом, W = √1.25 и ф = √1.25 + (1 /2). Однако √1.25 можно умножить на 1 в форме √4/2, чтобы получить √4x1.25 / 2 = √5 / 2. Теперь подставим √5/2 вместо √1.25 в уравнение ф = √1.25+ 1/2,и получим ф = (1 + √5) / 2.

Одна из самых удивительных особенностей ф заключается в том, что 1 + ф = ф2. Выполните простые алгебраические действия с этим уравнением, и вы получите (1/ф) + 1 = ф, уравнение, которое ведет к получению дополнительного ряда чисел, известного как последовательность Фибоначчи. Своим названием эта последовательность обязана имени одного из крупнейших математических гениев эпохи Средневековья - Леонардо Фибоначчи (ок 1170—1240), итальянского ученого, известного также под именем Леонардо Пизанский. Именно Фибоначчи познакомил европейцев с индийско-арабскими цифрами, которыми мы пользуемся сегодня. Он совершил длительное путешествие в Египет и внимательно изучал математические принципы и методы, встречавшиеся ему в дальних краях. Вполне возможно, что именно в Египте Фибоначчи нашел ту самую последовательность, которая сегодня носит его имя, и обнаружил ее взаимосвязь с числами пиф.

Последовательность Фибоначчи выглядит достаточно просто: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55... Каждое из этих чисел после первой 1 представляет собой сумму двух предыдущих. Весьма интригующим здесь представляется тот факт, что отношение каждого последующего числа к предыдущему является приближенным значением ф. По мере продвижения по этой последовательности степень приближения становится все более и более точной. Так, отношение 1 к 1 равно 1, 3 к 2 - 1,5, 5кЗ - 1,666, и к тому моменту, когда вы достигнете отношения 55 к 34, вы получите величину 1,61747, что очень близко к точному значению ф = 1,6180339.

На протяжении последовательности Фибоначчи значение ф демонстрирует немало любопытных естественных закономерностей, например, кривая роста раковины моллюска наутилус (кораблик), схема размещения семян в цветках подсолнечника или астры, и даже структура спиральной галактики. Платон в своем диалоге «Тимей» - том самом, в котором упоминается об Атлантиде, - говорит, что золотое сечение представляет собой одно из наиболее универсальных математических отношений и что оно является своего рода ключом к физике космоса в целом. Кроме того, золотое сечение является важным композиционным элементом на картинах многих живописцев эпохи Возрождения, включая произведения Фра Филиппо Липпи (1406—1469), Леонардо да Винчи (1452—1519) и Рафаэля (1483—1520). Оно образует композиционную основу для систему координат, которой пользовался Ле Корбюзье (1887—1965), великий швейцарский математик, спроектировавший, помимо прочих построек, здание штаб-квартиры ООН в Нью-Йорке.

Афиняне классической эпохи использовали золотое сечение при возведении Акрополя, а сложные математические расчеты, стоящие за ним, связаны с именами великих греческих геометров Пифагора (ок. 569—475 гг. до н.э.) и Эвклида (ок 325—265 гг. до н.э.). Однако Великая пирамида и другие монументы свидетельствуют о том, что египтяне Древнего царства знали о существовании золотого сечения (ф) и его связи с числом тс более чем за 2 тысячелетия до великих греков.

Возможно, первым автором, высказавшим это предположение, был Рене Шваллер де Любич (1887—1961), эльзасский математик и философ, чьи наблюдения за характером водной эрозии на основании Большого Сфинкса оказались едва ли не главной причиной моего первого приезда в Гизу. Рассмотрим, к примеру, рельеф, который изучал Шваллер и который находится на восточной стороне храма в Луксоре. Этот рельеф привлек его внимание куда больше, чем любое другое сооружение в Древнем Египте. На рельефе изображена группа жрецов, вносящих солнечную ладью царя через ворота храма в Карнаке. Согласно расчетам Шваллера, если ширину ворот от одной стенки до другой с внешней стороны принять за 1, то внешняя высота ворот будет равна 2; в то же время если ширину ворот от одной стенки до другой с внутренней стороны принять равной 1, то высота ворот с внутренней стороны будет составлять ф2 х 1,2 =3,1416.

Поделиться:
Популярные книги

Завод 2: назад в СССР

Гуров Валерий Александрович
2. Завод
Фантастика:
попаданцы
альтернативная история
фэнтези
5.00
рейтинг книги
Завод 2: назад в СССР

Метка драконов. Княжеский отбор

Максименко Анастасия
Фантастика:
фэнтези
5.50
рейтинг книги
Метка драконов. Княжеский отбор

Солнечный корт

Сакавич Нора
4. Все ради игры
Фантастика:
зарубежная фантастика
5.00
рейтинг книги
Солнечный корт

Никчёмная Наследница

Кат Зозо
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Никчёмная Наследница

Неудержимый. Книга XXI

Боярский Андрей
21. Неудержимый
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Неудержимый. Книга XXI

Контракт на материнство

Вильде Арина
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Контракт на материнство

Возвышение Меркурия. Книга 7

Кронос Александр
7. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 7

6 Секретов мисс Недотроги

Суббота Светлана
2. Мисс Недотрога
Любовные романы:
любовно-фантастические романы
эро литература
7.34
рейтинг книги
6 Секретов мисс Недотроги

Титан империи

Артемов Александр Александрович
1. Титан Империи
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Титан империи

Надуй щеки! Том 2

Вишневский Сергей Викторович
2. Чеболь за партой
Фантастика:
попаданцы
дорама
фантастика: прочее
5.00
рейтинг книги
Надуй щеки! Том 2

Наследник

Шимохин Дмитрий
1. Старицкий
Приключения:
исторические приключения
5.00
рейтинг книги
Наследник

Идеальный мир для Лекаря 7

Сапфир Олег
7. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 7

Моя (не) на одну ночь. Бесконтрактная любовь

Тоцка Тала
4. Шикарные Аверины
Любовные романы:
современные любовные романы
7.70
рейтинг книги
Моя (не) на одну ночь. Бесконтрактная любовь

Шайтан Иван 2

Тен Эдуард
2. Шайтан Иван
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Шайтан Иван 2