Мой метод: начальное обучение
Шрифт:
Итак, делим 87 632 на 64. Ставим крайние левые коробки (с 8 и 7 бусинами) над квадратными досками. На первой раскладываем 8 бусин в ячейки так, как будто делим их на 6. На второй раскладываем в ячейки 7 бусин, деля на 4 (в соответствии с цифрой на маленькой карточке, вставленной в прорезь). Целые частные выравниваются по первой доске и записываются в соответствующий разряд, остаток остается. Частное в данном случае — 1 (разряд тысяч) и на первой, и на второй доске. На первой доске остаток — 2, на второй — 3. Теперь передвигаем коробки влево. Первая вышла из игры, ее место заняла вторая. Теперь над первой доской не серо-зеленая коробка, а серо-белая, а над второй доской (с цифрой 4) красная коробка. Итак, на первой доске (с цифрой 6) отложены две зеленые
Работа требует терпения и внимания, но очень интересна детям. Они готовы заниматься ею дома по вечерам, в одиночестве, тихая игра, не утомляющая, не отпускающая.
Поупражнявшись в таком делении, ученик начинает предвидеть результат, не перекладывая бусины. Он научился не только делить, но и глубоко проник в суть операции, каждой ее детали, возможно, лучше, чем ученики средней школы, механически повторяющие заученные действия.
Когда ребенок при помощи наших материалов уяснил идею четырех основных арифметических действий и научился делать их в уме, ничто не мешает углубить знания, возможно, даже подойти к уровню средней школы. Эти упражнения одновременно служат и для повторения знакомого, и для узнавания нового. Они позволяют приятно проводить время в школе и дома.
Одно из первых упражнений является продолжением работы с таблицей Пифагора — умножение в уме, без помощи материальных предметов. В данном случае ставим ограничение. Прекращаем умножение, если результат получается больше сотни. Ради удобства записи будем в первой серии умножать до 50, а во второй (с записью во вторую колонку) от 51 до 1 00. Мы заранее готовим две таблицы, которые служат ученикам и подсказкой, и формой самопроверки. Читать примеры в колонке, сверху вниз, и учить их наизусть — это помогает запомнить результаты умножения всех чисел, от одного до 100.
С таблицами можно делать увлекательные упражнения. Детям дают листы бумаги, узкие и длинные. Слева записаны все числа, от 1 до 50 и от 51 до 100. Ученики смотрят в таблицу и подыскивают примеры, где в результате умножения получается заданное число. После чего ставят знак = и вписывают сомножители. Например, слева напечатано 6. Ставим = и пишем 2x3 = 3x2. Еще пример: 18 = 2x9 = 3x6 = 6x3 = 9x2. Возле некоторых чисел не удастся написать примеры. Строчка останется пустой — получится первое представление о простых числах.
Пример таблицы
Эти таблицы помогают выполнить еще одно упражнение. Например, разглядывая их, ребенок замечает, что 6=2x3 = 3x2. Он берет бусины и раскладывает их то двумя группами по 3, но тремя группами по 2, но одной группой. Для каждого числа он ищет свое расположение бусин.
Ребенок
Еще одно упражнение мы делаем с узкими листами бумаги. Вот написано произведение — 40. Один из примеров рядом 2x20. Посмотрим, как можно получить 20: 20=2x10, а 10=2x5. То есть
40 = 2x2x2x5.
Можно записать и так: два в кубе умножить на пять. Первое знакомство с возведением в корень.
Еще для одного упражнения готовим квадраты 10x10, где по порядку записаны все числа от 1 до 100, слева направо, сверху вниз:
и так далее.
Жирным шрифтом на разных квадратах выделяем числа, каждый раз выбирая новый принцип, например, все четные числа или все кратные девяти.
Квадрат и куб числа
Берем два стержня бусин по 2 бусины на каждом, соединяем их маленькой цепочкой:
Эта фигура представляет 2x2. Те же самые предметы можно соединить и по-другому. Палочки с бусинами расположить не в ряд, а друг под другом.
< image l:href="#"/>Это не изменит их значение, 2x2 все равно 4, но теперь это другое расположение в пространстве: линия и квадрат. Заметим, что всякий раз, располагая друг под другом столько стержней, сколько бусин на них нанизано, мы получим квадрат. Мы приготовили квадраты из стержней с бусинами 3x3 (салатовые), 4x4 (сиреневые), 5x5 (коричневые), 6x6 (зеленые), 7x7 (желтые), 8x8 (белые), 9x9 (голубые), 10x10 (красные), то есть тех же самых цветов, что и стержни с бусинами для освоения числовой системы. Для каждого количества есть стержни с бусинами, соединенные и в цепочки, и в квадраты, и просто свободные стержни (два стержня по две бусины, три — по три и т. д.). Ученик может считать бусины в цепи и в квадрате, а также по-своему располагать свободные стержни, то в ряд, то в форме квадрата. И каждый раз он повторяет число столько раз, сколько единиц в нем содержится, то есть умножает число само на себя.
К примеру, возьмем квадрат 4x4. Можно сосчитать 4 бусины на каждой стороне квадрата, можно умножить 4x4 =16. Это и общее количество бусин, и площадь квадрата. То же упражнение повторяем и с остальными квадратами. Понятно, что результат не зависит от формы. Стержни, вытянутые в линию, все равно дадут тот же результат. Можно научить ребят записывать результат в форме квадрата числа: 22 =4, 52 =25. Материал осваивается с самых малых чисел и постепенно, в сочетании со свободой ребенка, помогает идее проникнуть в сознание ученика.,
Кроме квадратов, по той же схеме созданные, у нас есть кубы чисел и прилагающиеся к ним соединенные в цепь квадраты. В этих цепях стержни соединены гибко, чтобы можно было складывать цепь, накладывать квадраты друг на друга. Количество квадратов в цепи соответствует количеству единиц на каждом отдельном стержне: 4 квадрата для числа 4, 6 квадратов для числа 6 и т. д. — до 10. Эти квадраты можно накладывать друг на друга, а можно и вытянуть в одну линию. Количество бусин не изменится. 4x4x4 = 42х4 = 43 = 64.